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Abstract. Handwritten Signatures are popular biometrics that are used
to authenticate individuals based on their unique physical or behavioral
attributes. These systems rely on deep neural networks (DNN) for fea-
ture extraction. However, DNNs are vulnerable to small imperceptible
perturbations. This research evaluates the robustness of signature veri-
fication systems through adversarial attacks. The state-of-the-art adver-
sarial attacks possess certain limitations: first attacks being white-box in
nature are impractical, and second these attacks add noise to the whole
image including the background making them quite perceptible. To ad-
dress these limitations, this study presents a lightweight approach based
on principal component analysis (PCA). Our novel algorithm generates
a universal noise vector using spatial transformation on principal compo-
nents. It also strategically confines perturbation to specific regions while
exploiting the principal components of the input image to launch at-
tacks. We also computed evaluations conducted across three benchmark
datasets to demonstrate compelling outcomes, in terms of attack success
rate, imperceptibility, and transferability.

Keywords: Adversarial Attack · Principal Component Analysis · Sig-
nature Verification.

1 Introduction

Biometric systems are used to associate unique physical or behavioral traits to
an individual which can be used to authenticate and identify these individuals
mostly in legal and financial matters. Since these are unique features it’s hard to
replicate or forge them. The handwritten signature is one such biometric trait
that has been used for centuries to authenticate or verify various entities related
to humans like bank cheques, documents, forms, and many more. The Signa-
tures are an important biometric because their collection is widely acceptable,
smooth, and non-invasive. These are modeled as pattern recognition and ma-
chine learning systems where the signatures of a user are stored in the systems
as a reference or template and the signature under test is authenticated to be ei-
ther original or forged. These systems can be online (dynamic) or offline (static).
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In an online system, the signature is acquired at the runtime with a stylus and
digital pad, and attributes like velocity, pressure, stroke length, writing speed,
etc. are calculated. Online systems are more powerful and accurate but are quite
expensive as compared to offline systems. Moreover, offline-based systems are
inevitable in certain situations like cheque transactions, etc. In this research,
we have considered the case of offline signature verification systems. Another
categorization of these systems is based on the writer. One is writer-dependent
and the other is writer-independent systems. The writer-dependent systems are
updated every time a new user gets registered in the system. On the contrary,
the writer-independent systems don’t follow that constraint and are generally
considered more practical [8]. The scope of this research article covers writer-
independent systems.
In the past, signature verification systems relied on handcrafted features, but
since the resurgence of Deep Neural Networks (DNN)-based systems, there has
been a paradigm shift toward more automated and data-driven approaches in
the field. Like all other areas, DNN has achieved state-of-the-art performance
in signature verification. The popularity also comes with the need to evaluate
the robustness of these systems. DNNs are said to be vulnerable to small care-
fully crafted perturbations/noises [7]. These noises are added to the input image.
These images are then called adversarial examples. The adversarial examples fool
the classifier misleading it into predicting wrong labels. The attack process is
called an adversarial attack. In this research article, we evaluated the robustness
of the Signature Verification Systems against our proposed adversarial attack
method as well as against state-of-the-art methods.
Since the advent of adversarial attacks by Szedgy et al. [17] a lot of attacks have
been designed and proposed by various researchers. Some of the state-of-the-
art include FGSM [7], Carlini and Wagner [3], BIM [12], etc. All these attacks
have been mostly designed for classification systems. It is to be noted that at-
tacking a verification system is not the same as attacking other classification
systems. The former possesses challenges and limitations that require careful
consideration. First of all, every time a new user enters systems an unseen class
is introduced. Secondly, the signature images are just strokes of the signature
on a bare background. Most of the attacks are applied to the full image but
in the signature images these attacks don’t provide good results as they attack
the full background and these pixels are already not taken into account by the
signature verification systems. Moreover, most of the attacks introduced in the
literature are white-box in nature i.e. they require full information of the model
to craft the attack. This is quite impractical in the case of signature verification
systems since these systems are involved in various legal and financial matters
so access to these or the information of the model is quite well protected. We
are interested in exploring whether the area of verification systems possesses any
characteristics that make them vulnerable to adversarial attacks as well. In the
light of these problems highlighted we present a novel attack method based on
exploiting the principal components of an image. Our approach doesn’t need any
information regarding the DNN model employed by the system. It’s a model-free
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approach. Moreover, with the use of principal components of an image we try to
alter selective pixels of the image to create an attack. The main objective is to
create a black-box, transferable attack to evaluate the robustness of signature
verification systems.
Principal Component Analysis (PCA) is essentially a data dimensionality re-
duction approach. It represents data linearly by reducing its dimensionality but
retaining important information. PCA transforms the original data into a new
data manifold where the new variables are uncorrelated known as principal com-
ponents, but capture the maximum variance in the data. It is a very lightweight
linear approach to transform the data into new space. PCA is utilized for ex-
tracting meaningful features from complex datasets, aiding in the identification
of critical variables or patterns [6].
Adversarial examples are regarded as non-robust features of the input images [17].
Motivated by this concept we make use of principal component analysis to high-
light the non-robust components that correspond to non-robust features of the
input images. We add noise to these components instead of the full image to
create an attack. The key here is to add noise to the minimum but important
components of the image. We generated universal noise, using spatial transfor-
mation on principal components. We have carried out extensive experimentation
in this area to evaluate the strength of the proposed attack method. In short in
this research article, we make the use of principal component analysis to find
out the minimum set of components to be altered in a way that the difference is
minimal but big enough for the model to be fooled. We conducted experiments
on three benchmark datasets trained on Siamese Convolutional Networks.

The main contributions and findings include:

1. The proposed model can generate imperceptible adversarial examples with-
out requiring gradients or model architecture making them practical to de-
ploy.

2. We developed two new techniques regarding adversarial attacks on signature
verification networks using a lightweight phenomenon Principal Component
Analysis (PCA). One is the restriction region of perturbation applied on
principal components of the image as well as creating a universal pertur-
bation matrix generated by spatial transformation on principal components
themselves.

3. We also evaluated the transferability of the proposed approach making the
attack more practical and hence difficult to defend.

The structure of the paper is as follows. Section 2 highlights the limited amount
of existing literature on the topic under consideration. Next, we discuss the
detailed methodology in Section 3. Experimental Protocol is described in Sec-
tion 4, followed by the results and discussion in Section 5. Finally, the paper is
concluded in Section 6.
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2 Related Work

Adversarial examples are the input images that are intentionally perturbed with
noise that is used to fool the classifier into wrong prediction. Since the advent
of adversarial attacks by Szegedy et al. [17] in 2013, a lot of attacks and defense
mechanisms have been proposed by researchers and practitioners to evaluate the
robustness of deep neural networks. Some of the first-generation state-of-the-art
methods include Fast Gradient Sign Method (FGSM) [7], Basic Iterative Method
(BIM) [12], Projected Gradient Method (PGD) [14] and many more. Universal
adversarial attacks are also introduced by Moosavi et al. [15] in which a single
noise is used to perturb all the data input belonging to different classes. FGSM is
a white box attack method that uses gradients to maximize the loss of the classi-
fier to perturb the input images. BIM is an extension of FGSM which is iterative
and takes small steps toward maximizing the loss of the classifier. PGD is a so-
phisticated extension of BIM which is an iterative optimization-based method.
Similar to BIM, PGD starts with an initial guess of the adversarial perturbation
and iteratively updates it in the direction that maximizes the loss function, while
ensuring that the perturbation remains within a bounded epsilon-ball around the
original input. All these attack methods are white box in nature and require full
information of the model and gradients to craft the almost impossible attack,
especially in sensitive secure systems like signature verification.
Adversarial attacks against signature verification systems are a relatively under-
explored area with only a handful of research articles in the area. Hafemann [9]
evaluated the robustness of signature verification systems using existing adver-
sarial attack methods like FGSM [7] and C&W [3]. These methods are quite
perceptible which disrupts the background of the signature image. Most impor-
tantly all the methods require full information about the system the gradients,
and the network architecture which is not practical. In another research Li et
al [13] proposed a black box method with region restriction. It’s an iterative
approach where noise is optimized while restricting it to the region of strokes.
The main drawback of this approach does not apply to binary images because
pixel values are not continuously adjustable and cannot select optimal pixels.
In another research [10] dictionary learning-based approach is used to attack
the signature verification systems. Our research is inspired by the same research
with the primary difference in the selection of data representation technique.
They [10] used dictionary learning to learn sparse representations of data and
use these representations as noise to create adversarial attacks. We have used
a lightweight approach to achieve the same with state-of-the-art performance,
whereas dictionary learning is computationally expensive. Moreover, they did
limited experimentation whereas our research did extensive experimentation to
prove the efficacy of the proposed approach. Only these three articles evaluated
the signature verification systems against adversarial attacks to the best of our
knowledge.
Another area of related work is the use of Principal Component Analysis (PCA)
to create adversarial attacks. This approach has been used by the authors in
[21]. They evaluated their proposed approach principal component adversarial
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example (PCAE) on MNIST, CIFAR, and Imagenet datasets where they didn’t
receive very encouraging results, especially on grayscale images like MNIST. We
also conducted experiments to compare our proposed method with PCAE. Prin-
cipal Component Analysis is also used to attack the audio domain of data by
authors in [1]. In this research, we have used PCA to compute a universal noise
to exploit a specific region of the principal components of the input image. Since
the background and foreground are separated, attacking signature verification
systems is very hard and challenging when compared to other classification sys-
tems. We attacked a Siamese network as they are gaining fast-growing popularity
due to their remarkable results [4, 18]. We have also highlighted the shortcomings
of traditional region restriction approaches in detail in section 3.3 followed by
the detail on how our method of region restriction is better. The experimental
and evaluation section proves the efficacy of our proposed approach.

3 Our Approach

Principal Components:  PC Noisy Components: NC

Replace the shaded region with noise

Reconstruction
(PCA.Inverse)

Adversarial Data:  Xadv

Input Data:  X

Apply PCA

Principal Components:  PC

Spatial Transformation

Noise: N

Fig. 1. Framework for the PCA-based Proposed Attack Model. The first row illustrates
how universal noise is computed and the second row shows exploiting specific principal
components of the image with noise to create adversarial examples.

We explain our proposed approach in detail in this section as illustrated in
Figure 1. The first step in the proposed approach is to compute the Principal
Components of the input image. On the other hand, a universal noise vector is
also computed using spatial transformation and principal component analysis.
In the third step, this noise is added to the principal components of the orig-
inal input image. Next, the noisy and non-noisy components are combined to
reconstruct the image. The reconstructed image is our adversarial image which
is then fed to the Siamese network for evaluation. In this section, all these phases
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are discussed in detail along with the problem definition and the details of the
Siamese Network.

3.1 Problem Definition

In this section, we formally define the problem and explain the threat model un-
der consideration. The model used in our research is the Convolutional Siamese
Network. Siamese networks have achieved remarkable results for the signature
verification problem. These are twin CNN architectures that share the same pa-
rameters and learn the same weights. These learn the same feature space when
introduced with similar and dissimilar inputs. This is achieved usually by min-
imizing Euclidean distance between similar pairs of inputs and maximizing it
between dissimilar pairs. These are ideal for problems involving similarity com-
parisons between pairs of data. As in this case similarity between original and
forged images. The loss function usually used for these network architectures is
contrastive loss which is defined as follows:

L(x1, x2, y) = α(1− y)D2
w + βy max(0,m−Dw)

2 where x1, x2 ∈ X (1)

Here x1 and x2 are input samples that can be original or forged signatures.
Dw =∥ f(x1;w1) − f(x2;w2) ∥2 is the Euclidean distance and w1 and w2, are
learned weights. y is the binary class label that denotes whether the two input
samples are similar or dissimilar. The forgers try to fool the signature verification
systems by creating forgeries of the signatures of the user. The DNN-based sys-
tems effectively detect these forgeries as the Siamese Network used in this paper
achieves 100% accuracy in detecting original and forged signatures. However,
such systems still suffer from two main threats identified as adversarial attacks
in this paper. One of the input samples introduced to the model is poisoned
with a small perturbation denoted as xadv which fools the model into assign-
ing a wrong indicator to the input pair. Mathematically, in the case of Siamese
networks, it can be denoted as:

L(x1, xadv) ̸= y (2)

where,
xadv = x2 + ϵp and d(xadv, x2) < ϵ (3)

The signature verification networks can suffer from two types of threats: Type I
and Type II attacks. Type I also known as False Rejection means that the genuine
signatures are modified in a way that they are rejected by the system. This isn’t
a very practical scenario as one needs to have access to the original signatures
of the user. The second is Type II also known as False Acceptance. In this case,
the forgeries are modified in a way that they are accepted by the system. Type I
requires access to original signatures by users which again is not a very practical
option for such secure systems. Type II however is more practical where you
modify a forgery to be accepted. In this article, we performed experiments for
type II attacks that is False Acceptance.
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Input 2 :x2 

CNN*
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Fig. 2. Siamese Convolutional Network-based Signature Verification System under ad-
versarial attack threat model

3.2 Principal Components

Principal Component Analysis is a statistical measure that is used to represent
data with linear combinations and lower dimensions. This tool transforms the
data into a new representation of uncorrelated data points with maximum vari-
ability. The new data components are sorted according to the decreasing amount
of variance with the first component holding the maximum variance and second
holding the second maximum variance and so on. Mathematically, PCA aims
to calculate the orthogonal axis (principal components) along which data varies
most. It does so by computing the covariance matrix on standardized data.

Σ =
1

n− 1
(X ′ − X̄ ′)T (X ′ − X̄ ′) (4)

X ′ is the standardized data matrix and X̄ ′ is the mean vector of the standardized
data.
The next step is to perform eigenvalue decomposition on the covariance matrix
to compute eigenvectors (V ) and eigenvalues (λ). Next, we select the k principal
components that are k largest eigenvalues to form Vk

PCi = X ′vi (5)

where PCi is the i-th principal component and vi is the i-th eigenvector.
PCA has proven to be very helpful in explaining the behavior of neural net-
works. Since it reduces data dimensionality while retaining the most important
information with maximum variance, thus helps in the interpretability of the
model [20]. The feature reduction helps identify important features. Therefore,
the motivation behind this research article is to make use of this important in-
formation to create adversarial attacks. We have used PCA for two tasks. First
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to compute a universal noise via spatial transformation on principal components
and secondly, we add the said noise to the principal components of the image
rather than the image itself. These two phases of the methodology are explained
in the preceding sections 3.3 and 3.4.

3.3 Restricting Perturbation to Specific Regions

The signature images typically have a clear background, separating it into fore-
ground and background elements, which complicates attempts at adversarial
attacks. Previous studies, such as those outlined in [13] and [10], employed con-
ventional methods like image inversion, GrabCut segmentation, or setting back-
ground pixels to 0 to delineate foreground from background. However, these
methods have limitations. For instance, setting the background to 0 and the
foreground to 1 is not viable for binary images. Moreover, most of the signature
verification models already extract the foreground as part of their pre-processing
step.
In our research, we introduce a novel technique aimed at confining noise per-
turbations to specific regions of the image, targeting critical features essential
for model classification. To address existing limitations, our study presents a
lightweight approach rooted in Principal Component Analysis (PCA). Our novel
algorithm strategically limits perturbations to specific regions while exploiting
the principal components of the input image to execute attacks. Notably, our at-
tack method is agnostic to model specifics, requiring no knowledge of the model,
its architecture, or gradients.
The process begins by transforming the image into a new feature space using
PCA, yielding a list of components containing the most important information.
The components hold maximum variance among data. Subsequently, noise is se-
lectively applied to regions within each component, preserving imperceptibility
by targeting only specific areas rather than the entire image.
Mathematically already defined in 5 this can be represented as follows:

PC = X ′Vk (6)

where PC stands for Principal Components computed after applying PCA to
data (X) and Vk are first k eigenvectors.

nci = PCi + region× noise[i] (7)

where nci is the i-th noisy component. Next, we explain the computation of this
noise to be added in the next section.

3.4 Universal Noise Computation via Spatial Transformation on
Principal Components

In this research, we have used the principal components themselves to create a
universal noise matrix. The principal components of X are calculated followed by
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spatial transformation operation. Spatial Transformation refers to altering the
spatial arrangement of the pixels in an image. These alterations are geometric
like rotation, and translation scaling that is changing the spatial relationship
between pixels of an image. The main idea is to tamper the components of the
image with a noise that holds relevant information about the data. The key is to
control the intensity and scale of noise in the important region which will ensure
its imperceptibility, transferability, and effectiveness against defense. We have
conducted experiments to evaluate all three parameters. Spatial Transformation
has been used by researchers to craft adversarial attacks and shows significant
strength [19]. In our case, we compute the principal components of the data.
Next, The rotation is performed around the center of the components matrix,
which is specified as ac, bc = (cols/2, rows/2). The rotation angle θ is set to 180
degrees, indicating a full 180-degree rotation. This transformation is applied to
the components (PC) and stored as noise variable.a′b′

1

 =

cos(θ) − sin(θ) (1− cos(θ)) · ac + sin(θ) · bc
sin(θ) cos(θ) − sin(θ) · ac + (1− cos(θ)) · bc

0 0 1

ab
1

 (8)

Where, (a, b) represents the coordinates of each pixel from the components com-
puted i.e. (a, b ∈ PC), (a

′
, b

′
) represents the coordinates of the corresponding

pixel in the rotated matrix, θ represents the rotation angle, and (ac, bc)represents
the center of rotation.

3.5 Reconstruction from Principal Components to generate
Adversarial Images

As a final step after the noise is added to specific regions in the principal com-
ponents of the image the original image is reconstructed using the PCA inverse
transform function. The reconstructed image is the adversarial image with em-
bedded noise in its components. This adversarial image is then fed to the Siamese
Convolutional Neural Network and is given as

Xadv = PCA.inversetransform(NC) (9)

where Xadv represents the set with all the adversarial images generated and NC
denotes the Noisy Components of all the images.NC = nc1, nc2, ...nck computed
in equation 7.

4 Experimental Setup

The experimental protocol designed to evaluate the proposed approach is dis-
cussed in this section. The details on datasets, architecture used, baseline meth-
ods, and metrics used for evaluation are all listed in this section.
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Algorithm 1: Principal Components based Adversarial Examples

Input: X → Set of pre-processed original signature images;
Result: Xadv → Adversarial Examples Set

1. Apply PCA to X
PC = PCA.transform(X)

2. Generate noise (N)
N = SpatialTransformation.Rotation(PC)

3. Generate noisy components (NC)
nci = PCi + region×N [i]
where, nci ∈ NC set

4. Generate adversarial examples (Xadv)
Xadv = PCA.inversetransform(NC)

Return Xadv)

Table 1. The details of datasets. Number of users and original and forged signatures
per user used for the experimentation.

Dataset Number of users Genuine images per user Forged images per user

Cedar 55 24 24

MCYT 75 15 15

GPDS 300 24 24

4.1 Datasets

We conducted experiments on three popular and widely used benchmark datasets:
CEDAR [11], MCYT-75 [16] and GPDS-synthetic [5]. The dataset contains orig-
inal signature images by legitimate users as well as forged signature images. The
details on the number of users and the number of original and forged signature
images per user are tabulated in Table 1. We have used all users’ data for Cedar
and MCYT but for GPDS we used 300 users with 24 forged and original images
per user.

4.2 Network Architecture

The proposed method is evaluated on a Siamese-based Convolutional Neural
Network as outlined in the paper in the paper [4]. The pre-processing steps in-
clude resizing the image to a fixed size of (155 × 220) followed by an inversion
operation to extract the foreground with a black background and white fore-
ground. We used the publicly available implementation of model architecture
with a minor variation in one of the layers 3. The variation includes changing
the filter size in one of the convolutional layers. This model is named Signet by

3 https://github.com/AtharvaKalsekar/SigNet/
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the authors and it has achieved state-of-the-art performance in signature verifi-
cation systems. Therefore, its powerful feature extraction makes it hard to attack
it.

4.3 Metrics

The contrastive loss, attack success rate, and structural similarity index measure
(SSIM) are measured to evaluate the proposed approach. The attack success rate
defines the number of forged signatures that are declared original by the system
(False Acceptance). SSIM is used to measure the similarity between two images.
It evaluates three aspects of similarity: luminance, contrast, and structure. SSIM
is widely used in image processing and computer vision tasks to assess the quality
of compressed or distorted images. Its value ranges from 0 to 1, where 0 means
no similarity and 1 means full similarity. SSIM is given as:

Original Proposed FGSM BIM PGD Boundary PCAE

Fig. 3. From left to right: First image is the legitimate forged input image with no noise
added, Second is the sample adversarial image generated by the proposed approach
followed by the adversarial images generated by state-of-the-art methods.

4.4 Baseline Methods and other Noises

We ran experiments to compare the proposed methods with two categories of
attacks. One is the baseline method. Fast Gradient Sign Method (FGSM) [7],
Basic Iteration Method (BIM) [12], Projected Gradient Descent [14], and Bound-
ary Attack [2] are among the first-generation state-of-the-art baseline methods.
We also compared the proposed method with the only relevant method related
to principal components to the best of our knowledge. This method is listed in
the tables by the name Principal Component Adversarial Example (PCAE) [21].
The second set of experiments conducted was to compare the proposed method
with a different set of noises. We ran experiments for Gaussian, Speckle, Salt &
Pepper, and Spatial Transformation noises.

5 Results and Discussion

This section discusses the results achieved when the proposed method is applied
to Cedar, MCYT, and GPDS datasets and compared with other methods. More-
over, discussion on different factors affecting the performance of the methodology
is also discussed with reference sample images.
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Table 2. The Loss of Classifier (lower the value more successful the attack is), At-
tack Success Rate, SSIM values reported on Cedar Dataset for our proposed method,
different noises, and baseline methods.

Method Loss Attack Succ. (%) Mean SSIM Median SSIM

Baseline Methods

FGSM [7] 0.07 88% 0.3 0.3

BIM [12] 0.07 88% 0.37 0.36

PGD [14] 0.07 88% 0.36 0.36

Boundary Attack [2] 2.74 66% 0.48 0.34

PCAE [21] 0.09 87% 0.76 0.72

Different Noises

Gaussian 10.50 0.5% 0.97 0.98

Speckle 11.70 0% 0.95 0.95

Salt & Pepper 0.09 88% 0.04 0.04

Spatial Transformation 0.08 89% 0.48 0.48

Proposed Method 0.07 90% 0.71 0.73

Table 3. The Loss of Classifier (lower the value more successful the attack is), At-
tack Success Rate, SSIM values reported on MCYT Dataset for our proposed method,
different noises and baseline methods.

Method Loss Attack Succ. (%) Mean SSIM Median SSIM

Baseline Methods

FGSM [7] 0.4 23% 0.41 0.41

BIM [12] 0.4 38% 0.47 0.47

PGD [14] 0.4 36% 0.47 0.47

Boundary Attack [2] 1.5 16% 0.7 0.9

PCAE [21] 1.86 19% 0.9 0.9

Different Noises

Gaussian 1.88 24% 0.95 0.98

Speckle 1.2 25% 0.9 0.97

Salt & Pepper 0.4 51% 0.04 0.03

Spatial Transformation 0.22 70% 0.38 0.37

Proposed Method 0.3 71% 0.71 0.71
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5.1 Results

We have reported contrastive loss, attack success rate, mean and median SSIM
values for the proposed approach, state-of-the-art, and different noises on the
principal components of the image. Table 2 reports all these metrics for the
experiments conducted on the Cedar Dataset. The results show the proposed
method achieves the highest attack success rate with the lowest loss. The SSIM
value for the proposed approach is 0.7. The state-of-the-art gives almost similar
results with very low values of SSIM i.e. 0.3. Fig 3 shows how state-of-the-art ap-
proaches like FGSM, and BIM disrupt the whole image making noise perceptible.
On the other hand, the PCAE [21] method gives promising results highlighting
the efficacy of principal components-based adversarial attacks. The results tab-
ulated in Table 3 show that the proposed method achieves the highest success
rate among others with an SSIM value of 0.7 when experiments are conducted
on the MCYT dataset. In the case of GPDS results reported in Table 4 show
the proposed method only achieves an attack success rate of 30%. Although it is
higher among other methods this low success rate is because data is synthetic.

Table 4. The Loss of Classifier (lower the value more successful the attack is), At-
tack Success Rate, SSIM values reported on GPDS Dataset for our proposed method,
different noises, and baseline methods.

Method Loss Attack Succ. (%) Mean SSIM Median SSIM

Baseline Methods

FGSM [7] 0.7 27% 0.8 0.8

BIM [12] 0.4 28% 0.67 0.67

PGD [14] 0.49 28% 0.67 0.68

Boundary Attack [2] 0.4 16% 0.8 0.8

PCAE [21] 0.70 2% 0.67 0.67

Different Noises

Gaussian 0.79 19% 0.9 0.9

Speckle 0.43 15% 0.5 0.6

Salt & Pepper 0.82 3% 0.2 0.2

Spatial Transformation 1.55 3 % 0.38 0.36

Proposed Method 0.49 30% 0.75 0.76

5.2 Effect of Different Noises

We have reported results of Gaussian, Speckle, Salt & Pepper, and Spatial Trans-
formation noise applied on principal components of the image on Cedar, MCYT,
and GPDS datasets in Tables 2, 3 and 4 respectively. The results for Gaussian
and Speckle noise are not encouraging. They don’t attack the system at all. Salt
and Pepper and spatial transformation noise achieve better attack success rate
but with no imperceptibility. The images from Fig 4 illustrated how the image
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is completely distorted in the case of Salt & Pepper as well as Spatial Trans-
formation. The high attack rate of spatial transformation noise encouraged the
proposed method to apply the spatial transformation-based universal noise to
specific regions of principal components to improve the imperceptibility with a
high success rate and low loss.

5.3 Transferability

The proposed method is considered a strong attack method as it’s a black-box
attack also known as gradient gradient-free method. Another strength of the
proposed method is that it is data-free as well. We evaluated the transferability
of the proposed method across different datasets. The results tabulated in Table 5
show the results when one dataset is considered a source and noise generated
from the source dataset is applied to the target dataset and model according to
the proposed methodology. We have achieved high success rates i.e. 90%, 77%,
and 56%.

Gaussian Speckle Salt & Pepper Spatial 
Transformation

Fig. 4. Adversarial image samples of different noises applied to principal components
of the image on Cedar, MCYT, and GPDS datasets

5.4 Effect of Region Restriction

The backbone of the proposed approach is restricting perturbation to specific
regions. Fig 5 illustrated the effect of different regions on the attack success rate
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and SSIM. We selected different regions of the principal component vector and
perturbed it with universal noise. It is evident from Figure 5 that when noise is
added to components in the beginning that hold maximum variance the effect
on imperceptibility is the greatest. As we move towards the components that
hold less variance the imperceptibility increases.

Table 5. The Loss of Classifer, Attack Success Rate, and SSIM reported for the case
of transferability with one dataset as the source and other as target

Cedar MCYT GPDS

Source Loss Attack Succ. SSIM Loss Attack Succ. SSIM Loss Attack Succ. SSIM

Cedar - - - 0.81 54% 0.8 0.56 24% 0.8

MCYT 0.07 90% 0.5 - - - 0.44 25% 0.8

GPDS 0.23 77% 0.6 0.66 56% 0.7 - - -

Region: Components[0:100]
Attack Rate: 58%
SSIM: 0.7

Region: Components[100:200]
Attack Rate: 82%
SSIM: 0.74

Region: Components[200:300]
Attack Rate: 57%
SSIM: 0.86

Fig. 5. Effect of Region Restriction on Attack Success Rate and SIIM for the proposed
method

6 Conclusion

In this paper, we proposed a black-box transferable attack method to evaluate
the robustness of Signature Verification Networks. A novel algorithm to generate
a universal noise using ideas from a spatial transformation tool and a lightweight
data representation tool is Principal Component Analysis (PCA), followed by
restricting the perturbation application area to ensure imperceptibility. It’s a
complete black-box method with no information about the model architecture
or weights learned. The experimental results on three widely used benchmark
datasets highlight the strength of the proposed approach. We achieved a high
attack success rate of 90%. We also conducted experiments to prove that our
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proposed approach is transferable across different datasets as well as model archi-
tectures. In the future, we would like to auto-tune the process of region restriction
as well as evaluate the proposed attack against various defense systems.
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