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Abstract Efficient and accurate representation of a col-

lection of images, that belong to the same class, is a major

research challenge for practical image set classification.

Existing methods either make prior assumptions about the

data structure, or perform heavy computations to learn

structure from the data itself. In this paper, we propose an

efficient image set representation that does not make any

prior assumptions about the structure of the underlying

data. We learn the nonlinear structure of image sets with

deep extreme learning machines that are very efficient and

generalize well even on a limited number of training

samples. Extensive experiments on a broad range of public

datasets for image set classification show that the proposed

algorithm consistently outperforms state-of-the-art image

set classification methods both in terms of speed and

accuracy.

Keywords Extreme learning machine � Image set

classification � Representation learning � Face recognition

1 Introduction

Image set classification has received significant interest

from the computer vision research community because of

its wide range of applications in multi-view object classi-

fication [4, 6, 22, 38, 41–43] and face recognition

[3, 5, 12, 13, 32–34]. The problem of image set classifi-

cation arises in many computer vision applications where a

given collection of images are known to belong to one class

but with unknown identity. In contrast to the traditional

single image-based classification, image set classification

algorithms model the given image collection as a whole to

obtain a more accurate estimate of the class identity. The

images in a set usually cover a diverse range of image

variations such as illumination, pose and scale changes.

Image set classification algorithms have the capability to

explicitly or implicitly model these variations for improved

classification accuracy [12, 13, 22, 32]. Image set classi-

fication is also applicable as a generalized form of video-

based classification. However, it is not necessary for the

images in a set to have any temporal relationship [13, 42].

An image set classification algorithm must essentially

address two core challenges; how to represent an image

set to effectively capture image level as well as set level

variations and how to define a distance/similarity measure

between two image sets. Defining a suitable distance

between two sets of images is often tied to the represen-

tation used to model the image sets in the first place.

Hence, most of the research in this area has concentrated

on developing image set representations by making cer-

tain assumptions about the set structure. Some techniques
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assume the set data follows a Gaussian distribu-

tion [32, 37, 41, 42] which is unlikely to be true for all

types of images. Image sets have also been represented by

linear subspaces [10, 22] even though there is evidence

that they are more likely to lie on complex mani-

folds [12]. To model more complex data structures, sev-

eral techniques have been proposed to model image sets

as a convex or affine hulls of the data samples [3, 13, 30].

These techniques are conceptually similar to nearest

neighbour classification and must impose certain con-

straints to avoid finding the neighbours in some low-di-

mensional space where image sets might

intersect. However, the ability to model more complex

image set structures comes at the cost of added algorithm

complexity [12, 13, 30, 32, 41, 43]. Therefore, these

algorithms cannot be efficiently scaled to handle large

image set classification tasks [28].

In this work, we have focused on developing an efficient

and accurate representation of image sets that can model

arbitrarily complex image set structures on one hand, and

scale to large problem sizes on the other. We employ

extreme learning machines (ELM) for this purpose pri-

marily due to their computational efficiency [8, 15–17, 29].

An ELM trains a single hidden layer feedforward neural

network (SLFN) by randomly initializing the weights of

the input layer and calculating the weights for the output

layer analytically. Deep ELM have the potential of effec-

tively learning the underlying structure of the image set

without any prior assumption on the distribution or struc-

ture of image set data. Our algorithm learns a Deep ELM

(DELM) model for each class in the gallery (training

classes) through unsupervised feature learning with an

ELM-based auto-encoder (ELM-AE) (Fig. 1). The probe

(test) set is assigned a label based on the lowest recon-

struction error.

The key contributions of this paper are threefold: (1) An

effective image set representation scheme based on deep

extreme learning machines that does not make any

assumption about the structure of the set but implicitly

learns it from training data. (2) The proposed algorithm

does not require a large amount of training data. (3) The

proposed framework is extremely fast both in training and

testing, i.e. training is 6000 folds faster than the best-per-

forming method, whereas the testing is 9 times faster. We

evaluate the proposed algorithm on the problems of image

set-based face recognition and object categorization on five

benchmark datasets including Honda/UCSD [25], CMU

Mobo [7], YouTube Celebrities [23], Celebrity-1000 [28]

and ETH-80 [26]. Results demonstrate that the proposed

algorithm consistently outperforms existing methods in

terms of accuracy, while achieving substantial speedups at

the same time.

2 Related work

Image set classification methods can be divided into two

major categories. The first one is sample based, whereas

the second one is structure based. The former uses the

nearest neighbours of two image sets to compute the set-

to-set distance under some predefined constraints. For

example, Cevikalp and Triggs [3] defined affine hull

image set distance (AHISD) and convex hull image set

distance (CHISD) that measured the affine and convex

hull distances, respectively, between two image sets. They

used a convex or affine geometric region to represent

image sets. For AHISD, the distance between the models

was minimized by using least squares, whereas in the case

of CHISD, an SVM was used to separate the two sets. Hu

et al. [13] modelled image sets jointly as affine hulls and

image samples. Nearest points on the affine hulls are

calculated through convex optimization such that each

point was also a sparse combination of the respective

image set samples. Distance between the two sparse

approximated nearest points (SANPs) was used for clas-

sification. Each SANP is situated close to some facet of its

affine hull. Thus, similar sets have smaller distance. Later,

Mian et al. [34] introduced the constraints of self-regu-

larization and non-negativity to define more accurate

between set distance. Mahmood et al. [33] performed

spectral clustering on the combined gallery and test

samples. The class-cluster distributions of the set samples

were then used for classification. Lu et al. [30] jointly

learn a structured dictionary and projection matrix to map

set samples into a low-dimensional subspace. The low-

dimensional samples were then represented using sparse

codes and classification was performed based on the tra-

ditional minimum reconstruction error and majority vot-

ing scheme. In general, sample-based methods are highly

susceptible to outliers and have high computational cost

for large galleries.

The second category of image set classification tech-

niques is structure based. The techniques in this category

model image set structures with linear subspaces and

measure the distance between subspaces for classification.

The discriminant canonical correlation (DCC) [22] method

used the canonical correlations between the sets to perform

linear discriminant analysis. Manifold–manifold distance

(MMD) [43] modelled an image set as more than one local

clusters where the clusters are computed such that each one

can be approximated by a linear subspace. Sparse

approximated nearest subspaces (SANS) [4] extracted local

clusters, via sparse representation, from the training image

sets. The test image set clusters are forced to resemble

those in the training sets and only corresponding clusters

are matched through the subspace-based distance.
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Manifold discriminant analysis (MDA) [41] modelled an

image set using multiple locally linear clusters which were

then transformed by a linear discriminant operator for class

separation. Image set structure was also modelled by

Harandi et al. [10] with linear subspaces which were con-

sidered as points on the Grassmannian manifold. This

method defined kernels that mapped points lying in the

Grassmannian manifold back to the Euclidean space where

graph-embedding discriminant analysis is used for classi-

fication. Similarly, covariance discriminative learning

(CDL) [42] modelled the image set structure with a

covariance matrix and mapped the covariance matrix from

the Riemannian manifold to the Euclidean space using the

Log-Euclidean distance kernel function. A regression

function was then learned using kernel partial least squares

to perform image set classification.

Deep learning has also been employed for learning the

image set structure. For example, Hayat et al. [12] learned

the structure of each gallery image set using a deep

learning model. The label of the probe set was then esti-

mated using the minimum reconstruction error and

majority voting scheme. Lu et al. [31] also represented

image sets with a deep model and used metric learning to

further maximize the margin between different classes in a

shared nonlinear feature space. Some recent structure-

based techniques are based on learning a Riemannian

metric directly on the Riemannian manifold without kernel

mapping, where the image set models are subspaces or

covariance matrices to characterize the set data structure.

For example, Harandi et at. [11] proposed a manifold-

based dimensionality reduction method. Unlike previous

methods that flatten the manifold through kernel

Fig. 1 Proposed image set classification algorithm. During training,

we first learn a domain-specific deep extreme learning machines

(DELM) model LG. Starting from the domain-specific model, we then

learn class-specific DELM models Lj for the gallery sets of each class

separately. Each sample of a probe image set Xt is first reconstructed

with all the learned DELM models and its label is estimated using on

the minimum reconstruction error. The label of the image set as a

whole is estimated using majority voting
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embedding, this method works on the original manifold to

produce better low-dimensional representations of image

sets. Huang et al. [18] learned a projection metric directly

on Grassmann manifold without mapping the manifold in

Hilbert space. Thus, the image sets can be represented on a

more discriminative Grassmannian manifold. Similarity,

Huang et al. [19] represented image sets with symmetric

positive definite (SPD) matrices and learned a log-Eu-

clidean metric by directly manipulating the original SPD

matrix logarithm without its vectorization. Some structure-

based methods exploit more flexible statistical models to

learn the set structure. For example, Wang et al. [44]

represented image sets with the more flexible Gaussian

mixture models (GMM) and proposed discriminant analy-

sis on the Riemannian manifold of Gaussian distributions

for classification. Harandi et al. [9] modelled the set

structure with probability distribution functions (PDFs) via

kernel density estimation. The models are then matched

using the Csiszar f-divergences. Structure-based techniques

are more powerful, however, compared to sample-based

techniques; they generally require larger number of sam-

ples per set (dense sampling) for the accurate modelling of

the underlying set structure.

We propose a structure-based image set classification

algorithm that neither makes prior assumptions about the

set structure nor incur a heavy computational burden to

learn the structure from the data. The proposed represen-

tation is based on deep extreme learning machines and is

capable of automatically learning the nonlinear structure of

image sets. The proposed algorithm is extremely efficient

to train and generalizes very well even with a small number

of training samples.

3 Proposed methodology

We first give a brief overview of extreme learning

machines (ELMs) and how they differ from other learning

paradigms. Then, we discuss how to extend the traditional

ELM idea to multiple layers, thus, allowing a deeper rep-

resentation. Finally, we show how image set classification

can be formulated using the deep ELM (DELM) models

and how it can benefit from ELM’s attractive properties,

namely very efficient learning (easily scalable to large

datasets) and generalizability (no prior assumptions on the

set data).

3.1 Extreme learning machines

Consider a supervised learning problem with N training

samples, fX;Tg ¼ fxj; tjgNj¼1 where xj 2 Rd and tj 2 Rq

are the jth input and target samples, respectively. d and q

are the input and target feature dimensions, respectively.

For the task of classification, tj is the class label vector

while for regression tj represents the desired output feature.

In either case, we seek a regressor function from the inputs

to the targets. A well-known type of this function is the

single hidden layer feedforward neural network (SLFN),

where nh hidden nodes fully connect the d inputs to the q

outputs. This is done through an activation function g(u).

The predicted output vector oj generated by feeding for-

ward xj through an SLFN is mathematically modelled as

oj ¼
Xnh

i¼1

bigðw>
i xj þ biÞ ð1Þ

where wi 2 Rd is the weight vector that connects the i-th

hidden node to the input nodes, bi 2 Rq is the weight

vector that connects the i-th hidden node to the output

nodes, and bi is the bias of the i-th hidden node. The

activation function g(u) can be any nonlinear piecewise

continuous function [27], e.g. the sigmoid function

gðuÞ ¼ 1
1þe�u.

An ELM learns the parameters of an SLFN (i.e.

fwi; bi; bignhi¼1) in two sequential stages: random feature

projection and linear parameter solv-

ing [17, 24, 35, 40, 45]. In the first ELM stage, the hidden

layer parameters (fwi; bignhi¼1) are randomly initialized to

project the input data to a random ELM feature space using

the mapping function g(). It is this random projection stage

that differentiates ELM from most existing learning para-

digms, which perform deterministic feature mapping. For

example, an SVM uses kernel functions, while deep neural

networks [1] use restricted Boltzmann machines (RBM) for

feature mapping/learning. By randomizing the feature

mapping stage, the ELM can discover nonlinear structures

in the data without the need for priors, which are inherently

the case for deterministic feature mapping schemes. Also,

these parameters are set randomly and are not subsequently

updated, thus decoupling them from the output parameters

fbignhi¼1, which can be learned in a very efficient manner as

we will see next. This decoupling strategy significantly

speeds up the parameter learning process in ELM, thus,

making it much more computationally attractive than deep

neural network architectures that learn all network

parameters iteratively.

In the second ELM stage, the parameters that connects

the hidden layer to the output layer (i.e.fbig
nh
i¼1) are learned

efficiently using regularized least squares. Here, we denote

wðxjÞ ¼ ½gðw>
1 xj þ b1Þ. . .gðw>

nh
xj þ bnhÞ� 2 R1�nh as the

response vector of the hidden layer to the input xj and

B 2 Rnh�q as the output parameters connecting the hidden

and output layers. An ELM aims to solve for B by mini-

mizing the sum of the squared losses of the prediction

errors:
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min
B2Rnh�q

1

2
kBk2F þ C

2

XN

j¼1

kejk22

s:t: wðxjÞB ¼ t>j � e>j ; j ¼ 1; . . .;N

ð2Þ

In (2), the first term is a regularizer against over-fitting,

ej 2 Rq is the error vector for the j-th training example (i.e.

ej ¼ tj � oj), and C is a tradeoff coefficient. By concate-

nating H ¼ ½wðx1Þ> � � �wðxNÞ>�> 2 RN�nh and

T ¼ ½t1 � � � tN �> 2 RN�q, we obtain an equivalent uncon-

strained optimization problem, which is widely known as

ridge regression or regularized least squares.

min
B2Rnh�q

1

2
kBk2F þ C

2
kT�HBk22; ð3Þ

Since the above problem is convex, its global solution

needs to satisfy the following linear system:

Bþ CH>ðT�HBÞ ¼ 0: ð4Þ

The solution to this system depends on the nature and size

of matrix H. If the number of rows of H is greater than its

number of columns and H is of full column rank (which is

usual when N[ nh), the system is overdetermined and a

closed form solution exists for (3) in (5), where InhR
nh�nh is

an identity matrix. Note that in practice, rather than

explicitly inverting the nh � nh matrix, we obtain B� by

solving the linear system in a more efficient and numeri-

cally stable manner.

B� ¼
�
H>Hþ Inh

C

��1

H>T ð5Þ

If N\nh, H will be having more columns than rows. This

leads to an under-determined least squares problem and B

may have infinite number of solutions. In such case, we can

restrict B to be a linear combination of the rows of

H : B ¼ H>a ða 2 RN�qÞ. Note that when the number of

columns of H is greater than its rows and H is of full row

rank, then HH> is invertible. By multiplying both sides of

(4) by ðHH>Þ�1H, we obtain a closed form solution for B�

B� ¼ H>a� ¼ H>
�
HH> þ IN

C

��1

T ð6Þ

To summarize, ELMs have two major attractive properties.

Firstly, the parameters of the hidden mapping function can

be randomly generated according to any continuous prob-

ability distribution, e.g. the uniform distribution on ½�1; 1�.
Secondly, as such, the only parameters that are to be

learned during training are the weights between the hidden

nodes and the output nodes. This is efficiently done by

solving a single linear system or even in closed form.

These two properties make ELMs more flexible than SVMs

and much more computationally attractive than the

conventional feed-forward neural networks that use back-

propagation [15].

The theoretical foundations of ELMs have been

explored recently by many researchers. Liu et al. [29] have

recently explained that ELM has the capability to achieve

the theoretical generalization bound of the feedforward

neural networks even when the weights of the hidden layer

neurons are set randomly. Huang [14] have recently pro-

vided a detailed theoretical explanation of the key char-

acteristics of ELMs which differentiates them from other

learning algorithms for the feedforward neural networks.

Moreover, ELM has also been extended by Huang

et al. [14] for learning powerful deep features in a hierar-

chical manner with low computational burden. Therefore,

ELM has found many successful applications in feature

learning, clustering, regression and classification [14].

3.2 Learning representations with ELMs

Learning rich representations efficiently is crucial for

achieving high generalization performance, especially at

large scales. This form of learning can usually be done

using auto-encoders, where a parametric regressor function

is learned to map the input to itself. Although deep neural

networks can be learned for this purpose and have been

shown to achieve exceptional performance in many com-

puter vision tasks [1, 2], they are generally very slow in

training. We use ELM-based auto-encoders [21] to perform

unsupervised learning of image set representations. ELMs

are computationally very fast to train. A deep ELM is

essentially a multiple-layer neural network whose param-

eters are learned by training a cascade of multiple ELM

layers. Such a learning procedure is highly efficient in

learning time and has good generalization capabilities.

Figure 2 illustrates the deep extreme learning machine

(DELM) learning process given the training set samples X.

A DELM auto-encoder is designed by setting the targets of

the multi-layer network to the input, i.e. T ¼ X. Here, a

fully connected multi-layer network with h hidden layers is

considered. Let L ¼ fW1; . . .;Whþ1g denote the DELM

parameters, where Wi ¼ ½wi
1; . . .;w

i
ni
�> 2 Rniþ1�ni . Each

layer is decoupled from the network and processed as an

ELM to simplify its training. To train individual ELM-AE,

the targets are set the same as the inputs. For example in

Fig. 2, W1 is learned using the corresponding ELM with

T ¼ X. The weight vectors that connect the input layer to

the first hidden layer are orthonormal, effectively project-

ing the input data to a random subspace. Orthogonalization

of these random weights tends to better preserve pairwise

distances in the random ELM feature space [20] compared

to initializing random weights independently, and at the

same time improves the ELM auto-encoder generalization
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performance. In the next step, depending on the number of

hidden layer nodes, (5) or (6) is used to calculate B1. Note

that, B1 re-projects the low-dimensional representation of

the input data back to its original space while minimizing

the reconstruction error. Therefore, this projection matrix is

data-driven and hence used as the weights of the first layer

(W1 ¼ B>
1 ). Similarly, W2 is learned by setting the input

and output of Layer 2 to H1 i.e. the output of Layer 1. In

this manner, all parameters of the DELM are computed

sequentially. However, when the number of nodes in two

consecutive layers is equal, the random projection obtained

in the second layer is in the same feature space as the input

of the first layer. Using (5) or (6) does not ensure orthog-

onality of the computed weight matrix B. Imposing

orthogonality in this case results in a more accurate solu-

tion since the data always lie in the same space. Therefore,

the output weights B are calculated as the solution to the

Orthogonal Procrustes problem

B� ¼ min
B2Rnh�q

kHB� Tk2F;

s:t: B>B ¼ I:
ð7Þ

The closed form solution is obtained by finding the nearest

orthogonal matrix to the given matrix M ¼ H>T. To find

the orthogonal matrix B�, we use the singular value

decomposition M ¼ URV> to compute B� ¼ UV>.
In ELM-AE, the orthogonal random weights and biases

of the hidden nodes project the input data to a different or

equal dimension space. The DELM models can automati-

cally learn the nonlinear structure of data in a very efficient

manner. In contrast to deep networks, DELM also does not

require expensive iterative fine tuning of the weights.

3.3 Deep ELM models for image set classification

DELM-based image set classification has two main steps.

Firstly, we learn a global domain-specific DELM model

using all the training image data and then build class-

specific DELM models using the global representation as

an initialization. In doing so, we encode both domain level

and class-specific properties of the data.

Define G ¼ fXmgcm¼1 2 Rd�N as the gallery of c image

sets (c classes) with a total of N images: N ¼
Pc

m¼1 sm,

where sm is the number of samples in the m-th image set

defined by Xm ¼ fximg
sm
i¼1 2 Rd�sm (where xim 2 Rd is a d-

dimensional features obtained by vectorizing the pixels of the

i-th image). The vector xim may also contain features such as

Histogram of Oriented Gradients (HOG) or PCA coefficients

instead of pixel values. Note that sm can be different for

different image sets; however, the xim dimensionality is the

same. Let Y ¼ fymgcm¼1 be the class labels of the image sets

in G. For a probe (test) image set Xt ¼ fxitg
st
i¼1 2 Rd�st , the

problem of image set classification involves estimating the

label Yt of Xt given the gallery G.

TrainingWe learn a global domain-specific DELMmodel by

initializing its weights using the ELM auto-encoding proce-

dure described earlier. This global DELM is a multi-layer

neural network with h hidden layers. Its parameters are

learned using the images inG in an unsupervisedmanner. The

Fig. 2 Layerwise training of a

deep ELM model with h hidden

layers and input X
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global DELM model is represented as

LG ¼ fW1
G; . . .;W

hþ1
G g, where Wi

G denotes the weight

matrix of the ith layer learned using the auto-encodingmethod

in Sect. 3.2. The global DELM model serves as a starting

point, from which we learn class-specific DELM models.

Since LG encodes domain-specific representation (as it

has been trained to reconstruct any sample from that

domain), we use it to learn a separate DELM model for

each of the c training classes. In other words, instead of

randomly initializing the hidden layers weights, as in the

conventional ELM, we use the weights in LG to initialize

the class-specific models. Thus, we have c DELM models

for c classes fLjgcj¼1, where each class-specific model is

represented as Lj ¼ fW1
j ; . . .;W

hþ1
j g.

The learned ELM models are able to encode complex

nonlinear structure of the training data due to their deep

architecture with multiple nonlinear layers. Compared to

the previous structure-based algorithms such as DCC [22],

GGDA [10] and CDL [42], our proposed DELM models

learn the structure of the image data in multiple parameters,

therefore, it is capable of learning more complex structure

on nonlinear manifolds. Moreover, this DELM model is

more computationally efficient than previous methods.

Testing Given a test image set Xt ¼ fxitg
st
i¼1, we predict its

label by first representing each image in this set using each of

the class-specific representations fLjgcj¼1 and assigning each

image to the class that incurs the least reconstruction error.

Then, majority voting on the predicted image-level classes is

performed to predict the class of the image set. The overall

procedure is summarized in Algorithm 1.

We reconstruct each test image xit in the set using

each of the class-specific models fLjgcj¼1. The recon-

structed sample from model Lj is denoted by x̂itj and is

given by

x̂itj ¼ f ðxitj;LjÞ ¼ Whþ1
j gðWh

j ; . . .; gðW1
j x

i
tÞÞ ð8Þ

where f is the reconstruction and g is chosen to be the

sigmoid function. The reconstruction error of sample xit is

computed as the Euclidean distance between xit and x̂itj as

eiðjÞ ¼ kxit � x̂itjk2. The predicted label lit for sample xit is

chosen to be the class that incurs the minimum recon-

struction error

lit ¼ argmin
j

eiðjÞ: ð9Þ

Finally, the test image set Xt is labelled using majority

voting on the set of predicted image-level labels. Formally,

we set the image set label Yt ¼ modeðflitg
st
i¼1Þ.

4 Experiments and results

We perform extensive experiments on five public datasets

(see Fig. 3) and compare our results to 14 state-of-the-art

image set classification methods. These datasets have been

widely used in the literature to evaluate image set-based

classification algorithms. Details of the datasets used,

experimental protocol, and results obtained are provided

next.
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4.1 Dataset specifications

The Honda/UCSD dataset [25] comprises 59 videos con-

taining faces of 20 different individuals. Each video con-

tains one face. This database was collected for evaluating

the performance of face tracking and recognition methods.

The videos are recorded indoor at 15 frames per second.

The minimum length of a video sequence is around 15 s

and a minimum of two videos are available per individual.

The faces in the videos contain significant pose and illu-

mination variations due to head rotations of the subjects.

For consistency with prior research that used the Honda/

UCSD data for face recognition experiments, we use 20�
20 histogram equalized face images extracted from the

videos using the Viola and Jones face detection method

[39]. In our experiments, the face images detected in each

video sequence form an image set.

The CMU Motion of Body (MoBo) dataset [7] consists

of video sequences of individuals walking on a treadmill.

This dataset contains 96 videos of 24 different individuals.

Since the subjects walk in four different styles (slow, fast,

incline, walk while holding an object), their faces contain

significant pose, illumination and image resolution varia-

tions. We detect face images in the videos using the Viola

and Jones face detection algorithm [39] and use LBP fea-

tures of the face images similar to [3] in our experiments.

The YouTube Celebrities [23] is a challenging dataset

that was initially collected for benchmarking the perfor-

mance of face tracking methods but has also been widely

used since then for performance evaluation of face

recognition algorithms. This dataset was collected from

YouTube and consists of 1910 videos of 47 celebrities such

as actors, actresses, players and politicians. Most videos are

of low resolution and contain significant compression

artefacts, facial pose, illumination and expression varia-

tions. There are upto 400 frames per video sequence. To

detect faces in YouTube Celebrities, we track a face in

each video sequence with the algorithm in [36] due to its

high accuracy. To initialize tracking, we use the location of

the face window in the first frame which was provided with

this dataset. After successful detection and tracking, the

face regions are cropped, converted to grey scale and then

resized to 20� 20. We use the LBP features (d ¼ 928) of

20� 20 face images for image set classification.

The Celebrity-1000 database [28] is a large-scale

unconstrained video database downloaded from YouTube

and Youku. It contains 159,726 face video sequences of

1000 individuals covering a wide range of poses, illumi-

nations, expressions and image resolutions. We follow the

standard closed-set test protocol defined in [28] where four

overlapping subsets of the dataset are created with

increasing complexity containing 100, 200, 500, 1000

subjects. Each subset is further divided into training and

test partitions with disjoint video sequences. Approxi-

mately 70% of the sequences are randomly selected to

construct the gallery and the rest are used as test sets. We

use the PCA reduced LBP?Gabor features provided by Liu

et al. [28]. The feature dimension d is 1651, 1790, 1815

and 1854 for the subsets 100, 200, 500 and 1000,

respectively.

Fig. 3 Example image sets from a Honda, b CMU Mobo, c YouTube Celebrities, d exemplar video frames from the Celebrity-1000 dataset,

e eight object categories and 10 different objects in one category of the ETH-80 dataset
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The ETH-80 Object Categorization dataset [26] consists

of eight different object categories (apple, cow, dog, cup,

pear, tomato, horse and car). Each object category contains

10 different instances of the same class. Each object

instance has 41 images, captured from multiple viewpoints,

to make an image set. The images are cropped to 256 �
256 so that the object is in the centre with 20% border area.

We re-scale the images to 20 � 20 and convert them to

greyscale in our experiments for image set-based object

categorization. ETH-80 is challenging because the number

of images in each set is low. Moreover, the objects have

significant within class appearance variations due to large

differences in viewing angle.

4.2 Experimental setup

We follow the standard experimental protocol

[3, 12, 13, 41–43] for a fair comparison with 14 state-of-the-

art algorithms including discriminant canonical correlation

(DCC) [22], manifold-manifold distance [43], manifold

discriminant analysis (MDA) [41], affine and convex hull-

based image set distance (AHISD, CHISD) [3], sparse

approximated nearest points (SANP) [13], covariance dis-

criminative learning (CDL) [42], graph-embedding Grass-

mannian discriminant analysis (GGDA) [10], set-to-set

distance metric learning (SSDML) [46], nonlinear recon-

struction models (NLRM) [12], geometry-aware dimen-

sionality reduction (GADR) [11], projection metric learning

on Grassmann manifold (PMLGM) [18] and log-Euclidean

metric learning (LEML) [19]. We use the source codes

supplied by the original authors of all compared algorithms.

We tuned the parameters of all the algorithms empiri-

cally to optimize their performances. In the case of DCC

[22], a subspace dimension is set to 10, leading to the

maximum canonical correlations of 10. The parameters of

MMD and MDA are chosen as recommended by the

original authors [41, 43]. More precisely, the Euclidean to

geodesic distance ratio is chosen within the range of {1.0–

5.0} for different datasets and maximum canonical corre-

lation is used to define MMD. Twelve connected NNs are

used for calculating the geodesic distances in MMD and

MDA. The PCA energy in CHISD, AHISD and SANP is

selected from {80, 85, 90, 95, 99%} and the best perfor-

mances are reported for each dataset. The error penalty

parameter C is set to 100 in CHISD. We used k½cc� ¼
1 k½proj� ¼ 100 and v ¼ 3 in GGDA. The number of eigen-

vectors used to represent an image set in Mobo dataset was

9, in YouTube Celebrities dataset was 6 and for all other

datasets, it was 10. CDL and SSDML do not require any

parameter tuning. PLS was used as a classifier with CDL.

For NLRM [12], we used the network depth and model

parameters as recommended by the authors. For

GADR [11], the number of nearest neighbours vw were set

to the minimum number of samples in each class and vb
was set to 6. We used the Stein kernel-based NN classifier

on the low-dimensional SPD manifold. For PMLGM [18],

we used the Grassmannian graph-embedding discriminant

analysis for classification and searched the parameter b in

the range of f1e2 � 1e6g and set a to 0.2. For LEML [19],

we used the CDL-PLS model and set the parameters as

recommended by the authors. The parameter g was sear-

ched in the range f0.1,1,10g and f in the range f0:1�0:5g.
The parameters of our algorithm include the number of

hidden layers h, the number of neurons in each hidden

layer nh and the parameters C. We set the number of hidden

layers h ¼ 2 for all datasets. The parameter C was chosen

in the range f104�108g for the first layer and f1016�1020g
for the last layer. The number of neurons in each hidden

layer nh was 20 for Honda, Mobo and Celebrity-1000, 40

for YouTube, 150 for ETH80 dataset.

One video sequence per subject was chosen to construct

the gallery, and the rest of the video sequences were chosen

as probes for the Honda and MoBo datasets. However,

DCC learning requires at least two image sets for each

class in the gallery. Therefore, we randomly partitioned

single gallery image sets into two non-overlapping subsets.

We conducted 10 repeated experiments with different

gallery and probe combinations in each experiment (fold).

For the YouTube Celebrities dataset, we conduct fivefold

cross-validation experiments similar to [13]. The videos are

divided into nine image sets per subject and each time,

three image sets are randomly selected per subject for

training and the rest are used for testing. ETH-80 dataset

has five image sets per class in the gallery for training and

the remaining five sets for testing.

4.3 Results and analysis

Table 1 reports the average and standard deviation recog-

nition rate (%) for tenfold experiments on Honda, Mobo

and ETH datasets and fivefold experiments on the You-

Tube dataset. Our approach performs better than competing

algorithms on YouTube celebrities, CMU Mobo and ETH-

80 datasets and achieves perfect results on the Honda

dataset. Recall that our algorithm involves no supervised

discriminative analysis as in DCC, MDA, CDL, GGDA,-

GADR, PMLGM and LEML, yet it performs better in both

accuracy and execution time. On the ETH-80 dataset,

structure-based algorithms [10–12, 19, 22, 41–43] achieve

better accuracy than the sample-based ones [3, 13, 46]

because the individual samples cannot model significant

intra-class pose and object appearance variations.

Table 2 summarizes the image set classification results

on all the splits of the Celebrity-1000 dataset. On the
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subset-100 (Celeb-100), our method obtains a 15%

improvement in classification accuracy over the existing

methods. As the feature dimension and dataset size is huge,

the training and testing time of all other methods is very

large on this dataset (for example on the Celeb-100, the

NLRM [12] method took about 60 h for training and the

MMD and MDA took more than 80 h using a Core i7

3.4GHz CPU with 8GB RAM). In contrast, our method

takes only 5.02 s for training and achieves better classifi-

cation accuracy than all previous methods. Similarly, on

the subset-200, the NLRM method took about 5 days for

training and the MMD and MDA took more than 8 days.

On subset-200, DELM takes only 9.02 s for training and

achieves better classification accuracy.

The subset-1000 contains 15 million frames in 1000

training image sets and 36 thousands frames in 2580 test

image sets. Therefore, previous image set classification

methods have a huge computational and memory

requirement on this subset. This makes the experimental

evaluation and the parameter tuning of these methods very

difficult and extremely time consuming. Therefore, on the

subset-1000, we only report the results of the proposed

algorithm and compare to Multi-Task Joint Sparse Repre-

sentation (MTJSR) [28]. Note that the accuracies of MTJSR

in Table 2 are provided by the original author [28]. The

proposed algorithm has comparable or better accuracy than

the MTJSR on different subsets. However, the reported

testing time of MTJSR in [28] is very high (3254 s) on the

subset-1000. In contrast, DELM only takes 350 s during

training and 1.7 during for testing. Thus, compared to pre-

vious image set classification algorithms, our DELM-based

framework is more scalable to large-scale datasets.

Robustness Similar to the experimental protocol of [3, 42],

we test the robustness of DELM to noise, i.e. outlier

samples. We use Honda dataset in these experiments. First,

Table 1 Comparison of the

average classification accuracies

and standard deviations (%)

(results are obtained by

performing tenfold experiments

for Honda, Mobo and ETH

datasets and fivefold for

YouTube Celebrities dataset)

Honda MoBo ETH-80 Youtube

DCC [22] (TPAMI 2007) 94.67 ± 1.32 93.61 ± 1.76 90.91 ± 5.31 66.75 ± 4.47

MMD [43] (CVPR 2008) 94.87 ± 1.16 93.19 ± 1.66 85.73 ± 8.33 65.12 ± 4.36

MDA [41] (CVPR 2009) 97.44 ± 0.91 95.97 ± 1.90 80.50 ± 6.81 68.12 ± 4.85

GGDA [10] (CVPR 2011) 94.61 ± 2.07 85.75 ± 1.82 85.75 ± 6.41 62.81 ± 4.42

CDL [42] (CVPR 2012) 100.0 ± 0.00 95.83 ± 2.07 88.20 ± 6.80 68.96 ± 5.29

GADR [11] (ECCV 2014) 96.78 ± 2.32 96.11 ± 1.34 95.50 ± 4.04 69.83 ± 4.39

PMLGM [18] (CVPR 2015) 100 ± 0.00 96.25 ± 1.18 94.50 ± 5.32 70.89 ± 4.66

LEML [19] (ICML 2015) 100 ± 0.00 95.56 ± 1.01 92.75 ± 5.94 70.23 ± 4.71

AHISD [3] (CVPR 2010) 89.74 ± 1.85 94.58 ± 2.57 74.76 ± 3.31 71.92 ± 4.55

CHISD [3] (CVPR 2010) 92.31 ± 2.12 96.52 ± 1.18 71.00 ± 3.93 73.17 ± 4.69

SANP [13] (TPAMI 2012) 93.08 ± 3.43 97.08 ± 1.03 72.43 ± 4.98 74.01 ± 4.68

SSDML [46] (ICCV 2013) 89.41 ± 3.64 95.14 ± 2.20 81.00 ± 6.58 70.81 ± 3.42

NLRM [12] (CVPR 2014) 100.0 ± 0.0 97.92 ± 1.76 95.25 ± 4.77 73.55 ± 4.74

DELM (this paper) 100.0 ± 0.0 98.00 ± 0.67 96.00 ± 3.51 75.31 ± 4.63

Bold values indicate the best accuracies

Table 2 Comparison of the

classification accuracy on

different subsets of Celeb-1000

dataset

Subset-100 Subset-200 Subset-500 Subset-1000 Average

DCC [22] 25.24 10.38 10.18 – –

MMD [43] 17.52 10.23 9.79 – –

MDA [41] 15.93 9.21 9.87 – –

GGDA [10] 11.95 8.24 9.64 – –

CDL [42] 11.95 11.11 10.65 – –

AHISD [3] 19.92 23.94 18.97 – –

CHISD [3] 20.31 22.41 18.35 – –

SANP [13] 20.71 21.64 19.12 – –

SSDML [46] 18.32 17.62 9.96 – –

NLRM [12] 34.66 31.81 27.68 – –

MTJSR [28] 50.59 40.80 35.48 30.03 39.22

Proposed DELM 49.80 45.21 38.88 28.83 40.68

Bold values indicate the best accuracies
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from each set we randomly select 100 images to generate

our clean data. This is done for both the gallery and the

probe sets. Next, we added one randomly selected image

from every class to other classes, thus corrupting each

image set with 19 outlier images. The clean image sets and

three noisy cases are labelled as Nc (clean), NG (only gal-

lery sets have noise), NP (only probe sets have noise) and

NGþP (both gallery sets and probe sets have noise). From

Fig. 4, we can see that our algorithm is more robust to

outliers in comparison with other methods. Sample-based

algorithms (AHISD, CHISD, SANP) are more adversely

affected by outliers compared to the structure-based

methods. This is not surprising because modelling the set

structure as a whole can better resist the influence of outlier

samples.

In the next experiment, we evaluate the robustness of

our algorithm to the decreasing number of images in each

image set. We used the YouTube Celebrities dataset for

this experiment and randomly selected Nr samples from

each image set for training and testing each. We used the

maximum available samples in case there were less than Nr

samples in a given set. The average accuracies of different

methods for three values of Nr is depicted in Fig. 5. Note

that our algorithm is comparatively more robust and con-

sistently outperforms other methods for all values of Nr.

Parameter analysis We perform parameter sensitivity

analysis of the proposed DELM using the YouTube dataset.

First, we perform image set classification using only the

domain-specific model LG for the reconstruction. This

achieved an average accuracy of (62.41 ± 4.21%) which is

significantly lower than the accuracy (75.31 ± 4.63%) of

using the class-specific models. This confirms that learning

the class-specific models is important for improved accu-

racy. Next, we perform experiments by changing the

number of hidden layers h. For h ¼ 1 the accuracy on

YouTube dataset is 68.25 ± 4.21%, whereas for h ¼ 2 the

accuracy is 75.31 ± 4.63. By increasing h further, the

execution time and memory requirement increase, but the

improvement in accuracy was not significant. Finally, we

vary simultaneously the parameters nh and C and observe

the average accuracy. The accuracy remains stable for large

values of parameter C. We vary nh in the range

f20; . . .; 200g and observed that the average accuracy is

more stable in the a range of nh ¼ f30; . . .; 60g for You-

Tube dataset, and hence, we report the results with nh ¼ 40.

Execution time We compare execution times on the You-

Tube Celebrities dataset. Table 3 shows the average exe-

cution times over the fivefold experiments using a Core i7

3.4GHz CPU with 8GB RAM running MATLAB. The

proposed algorithm is significantly faster than the compared

state-of-the-art algorithms in both training and testing. For

example, our method takes only 1.01 s in training compared

to 6542 s for NLRM, while achieving better accuracy.

Memory requirement We also compare the training mem-

ory requirement of the proposed algorithm with other

algorithms on the YouTube Celebrities dataset. DELM has
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Fig. 4 Average accuracy of different image set classification

algorithms when the image sets are corrupted by noise
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Fig. 5 Robustness of the accuracy to the number of images in each

set. Nr samples are randomly selected

Table 3 Execution times (in s) and training memory requirements (in

megabytes) on the YouTube Celebrities data

Method Training Testing Memory (MB)

DCC [22] 167.49 8.08 20.8

MMD [43] 313.57 78.32 150.2

MDA [41] 580.70 201.48 [4 9 104

CDL [42] 345.88 13.08 238.8

GADR [11] 335.71 20.27 250.5

PMLGM [18] 198.25 10.24 230.4

LEML [19] 135.41 17.38 280.7

GGDA [10] 450.92 20.24 200.0

AHISD [3] – 18.10 93.7

CHISD [3] – 190.61 971.4

SANP [13] – 17.94 160.6

SSDML [46] 400.01 21.87 127.7

NLRM [12] 6542 0.54 523.7

Proposed DELM 1.01 0.06 14.3

Test time is for matching one test image set to 141 training image sets

Bold values indicate the best execution time
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lower training memory requirements (14.3 MB) to achieve

better classification results than previous image set classi-

fication algorithms (Table 3).

5 Conclusion

We presented an algorithm for efficient image set clas-

sification by learning the nonlinear structures of image

sets data using deep extreme learning machines. Our

algorithm does not make any assumptions about the

underlying image set data and is scalable to large data-

sets. Nonlinear structure is learned with the deep extreme

learning machines (DELM) that enjoy the very fast

training times of ELMs while providing deeper repre-

sentations. Moreover, DELM models can be accurately

learned from smaller image sets containing only a few

samples. Experiments on five benchmark datasets show

that our algorithm consistently outperforms 14 existing

state-of-the-art image classification methods in both

accuracy and execution time.
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