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Abstract—Convolutional Neural Networks (CNNs) are produc-
ing state-of-the-art results in the object detection field. However,
deep topologies of CNN are computationally intensive and typi-
cally require excessive resources (i.e. high-end GPUs), which hin-
der their deployment on resource and power constrained UAVs.
In this work, we present a high-throughput and power efficient
quantized object detection network, QuantYOLO, which is based
on the Tiny-YOLOV2 topology. We conduct a detailed exploration
of precision and filter pruning vs. accuracy, throughput and
power consumption trade-off for the object detection task. As
a result of these explorations, we select a network with binarized
weights and 4-bit activations (except the output layer), which is
21.8x smaller than the Tiny-YOLOv2 achieving a mean Average
Precision (mAP) of 51.5% on the PASCAL-VOC dataset. Finally,
we present an FPGA based accelerator, which achieves 1.6x
higher throughput (FPS) and is 3.1x more power efficient as
compared to prior FPGA architectures.

Index Terms—Quantized Convolutional Neural Networks, Ob-
ject Detection, Pruning, Depthwise Separable Convolutions, Real-
Time and Power-Efficient Architecture.

I. INTRODUCTION

State-of-the-art Deep Learning (DL) based object detection
networks, such as You Only Look Once (YOLO), Region-
based Convolutional Neural Networks (R-CNN) and Single
Shot Detector (SSD), are based on Convolutional Neural
Networks (CNNs) [1]-[3], and are widely used in search and
rescue, infrastructure/crop/forest inspection, and surveillance
domains. There has been an increasing interest at the edge-
inference of these object detection algorithms on Unmanned
Aerial Vehicles (UAVs) to achieve real-time performance.
Although Graphics Processing Units (GPUs) can achieve real-
time performance, the high power consumption of GPUs is a
bottleneck in the deployment of these algorithms at the edge.

Although, the detection accuracy of DL-based object de-
tection algorithms has increased considerably during the last
decade, the computation complexity and memory require-
ments of these algorithms have also grown. As a result,
inference implementations are unable to fulfil the stringent

power and throughput requirements for their embedded de-
ployment. Therefore, model compression techniques such as
quantization [4], depthwise separable convolutions [5] and
pruning [6] play a critical role in reducing the computational
complexity and memory requirements without effecting the
accuracy. Considering all the mentioned limitations from soft-
ware and architecture perspective, Field-Programmable Gate
Arrays (FPGAs) are ideal candidates for the deployment of
object detection algorithms due to three reasons. First, they
allow customized hardware architecture with bit-level paral-
lelism that results in high energy efficiency and throughput.
Second, FPGAs can use custom memory hierarchies, which
are critical for efficient data transfers and processing. Third,
FPGAs support customized precision data types, such as 1-
bit weight and 4-bit activation, which is considered for the
presented architecture. Hence, we selected the Xilinx Zynq
ZC706 FPGA development board with XC7Z045 device as
our deployment platform.

The design of CNN object detector accelerators has become
an active area of research in recent years. In [7], the authors
proposed scalable convolutional blocks for real-time object
detection. In [8], the authors conducted experiments with
CNN-based object detectors on Xilinx FPGAs. The proposed
architecture was unable to achieve real-time inference results.
The work in [9] presents experiments with multiple object
detection networks on a Xilinx Zynq 7000 SoC device. [10],
[11] explore low bit-width quantization for object detection. In
both of these works, quantization results in a tremendous loss
to the network accuracy. YOLO-LITE [12] and Mixed YOLO-
v3-LITE [13] explore architectural modifications in the object
detectors, YOLO and Tiny-YOLO. In contrast to previous
works, we present a model, QuantYOLO, which combines
different compression techniques i.e. quantization, pruning
and, depthwise separable convolution without significant loss
of detection accuracy. Furthermore, we also present a hardware
architecture to efficiently map the inference on an FPGA
for low power and real-time object detection. The major



contributions of our work are summarized as follows:

o We cross-correlate the gain in throughput with the loss in
accuracy for a range of quantized bit-widths for weights
and activations to achieve an optimal throughput-accuracy
trade-off. Furthermore, We investigate the efficacy of
combining pruning and depthwise separable convolutions
with quantization for our network. Finally, we present
an optimal trade-off between compression techniques
and accuracy, throughput, and power consumption for
deployment of the object detection networks on resource
and power constrained UAVs.

o We present an FPGA architecture for real-time object
detection, QuantYOLO, with 1-bit weights and 4-bit
activations (except the output layer which uses 32-bit ac-
tivations). The proposed architecture achieves 25.29 FPS,
which is a 1.6x improvement over previous FPGA-based
architectures [8], [14]-[20]. Furthermore, the power effi-
ciency of the architecture is 13.17 FPS/W, which is 3.1x
improvement.

o The results of the Runway-Det dataset illustrate that our
architecture is 7.78 x energy efficient, while accomplish-
ing 3.7 x higher FPS as compared to Nvidia Jetson Nano
embedded GPU.

The paper is structured as follows: in Section II we explain
the background of the object detection and quantized CNNs.
In Section III we describe the training approach, ablation
study and experiments for designing our network topology.
In Section IV we describe the architecture for inference on
FPGA. Section V discusses our results. Finally, Section VI
concludes our work.

II. BACKGROUND
A. Object Detection using CNNs

YOLO [1] is a state-of-the-art object detection network.
It redefines object detection as a single regression problem.
The image is divided into a grid of S x S cells. Each grid
cell detects an object and predicts B bounding boxes and
the corresponding confidence scores, when the center of an
object lies in that cell. B is the number of anchor boxes
associated with every grid cell. Each bounding box prediction
has 5 components: (z,y,w, h, confidence score). (z,y) are
coordinates of the centre of the box while (w, h) are its dimen-
sions. The con fidence score is the probability of presence
of an object in the bounding box. For class probabilities, a
vector of length C (number of classes) is associated with
each grid cell. Consequently, a three-dimensional tensor with
dimensions S x S x B(5+ C) is the output. YOLO employs
Non-Maximal Suppression (NMS) to avoid predicting multiple
bounding boxes for the same object.

B. Neural Networks Compression

Deep neural networks have millions of parameters (i.e.
weights and activations) and require billions of operations to
complete their task. Such as, a neural network (NN) topology
VGG-16 [21] has a model size of 560 MB and requires up to
15.8 billion computations. Due to this reason, NN compression

methods are vital in reducing the size of the model and making
it suitable for porting to an embedded device. However, a
balanced trade-off between these compression techniques is
important due to their impact on the accuracy of the algorithm.

Quantization plays a key role in achieving comparative
levels of accuracy as compared to full precision (32-bit floating
point) networks. The 8-bit quantized CNNs have shown mini-
mal accuracy reduction as compared to full precision networks.
Aggressive quanitzation i.e. Binary Neural Networks (BNNs),
in which both weights and activations are constrained to
+1 and -1 or 0 and 1 respectively. While BNNs give good
results for simpler networks, they can deteriorate accuracy for
deep networks such as object detection algorithms. Therefore,
Quantized Neural Networks (QNNs), which use fixed point
representation for weights and activations are preferred for
such tasks. QNNs provide more flexibility in choosing bit-
widths for the network. [22], [23] explore methods to train
BNNs and QNNs. In this work, we have explored with dif-
ferent bit-widths for weights and activations to select optimal
bit-width for the object detection task.

Pruning helps in reducing the latency as well as the memory
footprint of CNNs through the removal of parameters (i.e.
weights and activations) from the network based on sparsity.
It works on the basis of a binary criteria to decide which
weights are excluded from a network. The excluded elements
are trimmed from the model, their values are set to zero and
are not updated during back propagation.

A depthwise separable convolution layer is a combination of
two layers; a depthwise convolution followed by a pointwise
convolution. A depthwise convolution is a spatial convolution
performed independently over each channel of an input. A
pointwise convolution is a 1x1 convolution which operates
over the depth and changes the number of channels instead
of other dimensions. It projects the channels output by the
depthwise convolution onto a new channel space. Overall,
these convolutions have lesser parameters and operations as
compared to the standard convolutions.

III. TRAINING

For our experiments, we modify the Lightnet [24] frame-
work to support quantization and pruning. The experiments
are evaluated on two datasets shown in Table I. We use
the PASCAL-VOC 2007+2012 [25] dataset for training and
PASCAL-VOC 2007 for validation, similar to the approach
used to train YOLO. In addition, we train and evaluate our
results on a runway detection dataset, Runway-Det. This
dataset consists of images of runways collected from Google
Earth [26]. The images contain only one object (runways) for
autonomous landing of UAVs. Selected samples of this dataset
are shown in the Fig. 1. The hyperparameters used for training
are presented in Table II. We trained our model on PASCAL-
VOC and then used transfer learning to fine-tune the network
on the Runway-Det dataset.



TABLE I
DETAILS OF DATASETS USED IN THIS WORK

Dataset Number Training  Testing
of Classes Images Images
PASCAL-VOC 20 16,511 4,952
Runway-Det 1 4727 1,000
TABLE II

HYPERPARAMETERS USED FOR TRAINING OF THE NETWORK

Batch size 64
Mini batch size 8
Number of anchor boxes 5

Optimization algorithm Adam [27]
Learning Rate 0.0025/Batchsize
Confidence threshold 0.25

NMS threshold 0.5
Input Image Resolution 416 x 416 x 3

A. Ablation Study

We selected the Tiny-YOLOvV2 [28] topology as our baseline
model since it is smallest and fastest of the YOLO object
detectors. Later versions of Tiny-YOLO, as described on the
Darknet website [29], focus on improving accuracy which
results in substantial increase of computational costs. Tiny-
YOLOV2 is a single forward-pass object detector with only
9 layers. Hence, we found it to be at an ideal spot on the
accuracy and throughput trade-off. We acquired the pre-trained
weights of Tiny-YOLOv2, on PASCAL-VOC, from [30], and
performed an ablation study to compress the network. The
significance of each layer for the output is quantified by the
root mean square (RMS) of weights and the percentage of
weights (w) close to zero i.e, —0.005 < w < 0.005, in each
Convolution (CONV) layer of the pre-trained network, see
Fig. 2. This analysis is based on exploiting the sparsity in
the network.

This analysis suggests that layers 1 and 2 of Tiny-YOLOv2
are highly significant, while layers 7 and 8 have a considerable
number of weights close to zero. A high ablation ratio of
50% for layers 7 and 8 results in a slight drop of mAP. To
compensate for this, the number of filters in the layers 1 and
2 are increased. Our experiments (see Table III) indicate that
the Config 4, with 50% filter ablation from layers 7 and 8
followed by a 100% increase in layer 2 filters, produces the
best performing network. It achieves 2.49x filter reduction

Fig. 1. Sample images from the Runway-Det Dataset.
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Fig. 2. (a) Comparison of Root Mean Square of weights for CONV layers
(b) Comparison of percentage of weights with values < 0.005 for CONV
layers

TABLE III
ABLATION STUDY EXPERIMENTS

Configuration Ci mAP No. of

Cy Cy Cr Cg 3x3x1 filers
Tiny 16 32 1024 1024  57.1% 1,747,504
YOLOv22 [28]
Config 1 16 32 512 512 549% 698,928
Config 2 32 64 512 512 56.4% 702,560
Config 3 32 32 512 512 55.3% 699,488
Config 4 16 64 512 512 56.2% 701,488

L Cp, represents number of channels C' in layer L.

2 The configuration of Tiny YOLOV2 and its mAP on PASCAL-VOC were
taken from [30]

as compared to Tiny-YOLOv2 with a drop of only 1% in
mAP. We chose this configuration to perform further network
compression as described in subsequent sections.

B. Quantization

We use the same quantization approach, which is presented
in [22], [23]. We adopt Eq. la as a binarization function for
weights. We scale the binarized weights by their channel-wise



means. For multi-bit activations, we use the function in Eq.
1b, where x is the input real number, z € [0, 1], which is
quantized to k bits to produce output (). We further quantize
the gradients to 16-bits to accelerate training using Eq. Ic,
where gr is the full-precision gradient tensor for layer L,
maz() computes the maximum value of its input, Q. is the
function defined in Eq. 1b, and g’z is the quantized gradient
tensor for layer L quantized to k bits.

-1, =<0
@) = { +H, 23>0 e
round(z x (28 — 1))
Qula, k) = o (1b)
. g L1
g1, = 2maz(|gL|) x [Qk(2ma$(|gL|) " 2) 2] 1

We name the networks as WxAy where x and y are the
number of bits for weights and activations respectively. A
series of experiments reveal that activations of last layer (the
output) could not be quantized because of the nature of post-
processing in YOLO algorithm. Following are the experiments
we performed with different bit-widths for weights and acti-
vations of our network.

o W1A4-PartialQuant-1: The first and last three layers
are not quantized while the middle ones are quantized
to W1A4.

o WI1A4-PartialQuant-2: All the layers are fully binarized
(W1A4) except for input and output layers, which uses
32-bit precision.

e WI1A4-FullQuant: The input image is quantized to 8-
bits. Weights of all layers are binarized, while all activa-
tions except for last layer are quantized to 4-bits.

o« WI1A2-Quant: The bit-width of the hidden layer activa-
tions in W1A4-FullQuant is changed to 2-bits.

C. Depthwise Convolutions and Pruning

We conduct experiments to evaluate the suitability of depth-
wise separable convolutions and filter pruning for our quan-
tized network. For pruning, we use Frobenius norm-based (FN)
[6] and Geometric median-based (GM) [31] filter pruning. The
pruning rate is set at 0.1 in our experiments, which translates
to the removal of 10% filters with lowest norm values from
each layer. Since pruning is based on sparsity in NNs, we
could not use high percentages with QNNs. We experimented
with the following approaches:

o Depthwise-FullPrec: Layers 2 to 7 of our full precision
network are replaced with depthwise separable convolu-
tion layers.

o Depthwise-W1A4: The Depthwise-FullPrec model is
quantized to W1A4.

o FN-Pruned-W1A4: All layers except the last layer of
the W1A4-FullQuant model are pruned using FN as the
criteria.

e GM-Pruned-W1A4: All layers except the last layer of
the W1A4-FullQuant model are pruned on the basis of
GM. GM is more reasonable as compared to FN as

it searches for a point z’ that minimizes the sum of
Euclidean distance to a set of n points , a',a?,...,a",
see Eq. 2a and 2b. Therefore, GM is more robust.

x = argminf(x) (2a)

Y llz—dll2

i€[1,n]

where

fx) = (2b)

D. QuantYOLO topology

Our experiments show that the best results are achieved for
the W1A4-FullQuant model. Fig. 3 illustrates the topology of
the QuantYOLO network. All the layers of the network have
been quantized to a smaller bit-width. The input layer in Fig. 3
represents the input images to the model. The last CONV layer
(Layer 9) is a pointwise convolution layer with K number of
filters, given by Eq. 3.

K = Bx(5+0) 3)

Where B is the number of anchor boxes and C' is the number
of classes in the dataset. We use five anchor boxes. Thus, K
is equal to 125 and 30 for PASCAL-VOC and Runway-Det
respectively.

IV. ARCHITECTURE FOR INFERENCE

We used an existing architecture proposed in [32]. The
CONY, batch normalization and activation layers of our quan-
tized model are approximated through bit-wise operations. For
BNNSs, the multiply-and-accumulate (MAC) operations in the
CONV layers are represented by the bit-wise XNOR followed
by the popcount operation. An XNOR operation, shown in Eq.
4a, yields the same result as multiplication when x and y are
vectors of {—1,1}. The bit-wise operation kernel in Eq. 4b is
used instead of the MAC operation for 1-bit weights and 4-bit
activations. In the popcount operation, number of set bits (bits
with value 1) are counted.

x -y = N — 2 X popcount(znor(x,y)),

4
Ti,Yi € {_15 1} Vi ( a)

v k
X-y 22 X popcount[znor( co(x), ck(y))], (4b)

co(x)i, cu(y)i € {0,1} Vi, k

Xilinx FPGAs have two parts - Processing System (PS)
and Programmable Logic (PL). PS consists of ARM cores
and is suitable for sequential tasks. PL is the programmable
(FPGA) part, which is ideal for parallel tasks. Our NN is
partitioned between PL and PS parts. The post-processing
steps of QuantYOLO are performed on the PS side owing to
their sequential nature, which is accelerated through vector-
ization. Since CONV layers are the most compute intensive,
multiple channels are processed in parallel on the PL side
to reduce latency. [32] achieves parallelism through multiple
computation units called Processing Engines (PEs) which have
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Fig. 3. The QuantYOLO topology.

multiple Single-Instruction-Multiple-Data (SIMD) lanes for
high performance. The activation function and batch normal-
ization are implemented as thresholding steps. The thresholds
are learnable parameters of the model which are computed
during the weight generation step after training. We also
use maxpooling layers which are implemented as a separate
hardware unit. For the implementation of convolution layers
on PL, we experimented with two approaches; Multi-layer
Offloading (MO) and Feed Forward Dataflow (FFD). In the
FFD implementation, all the CONV layers are implemented
on the PL part of the FPGA and the network parameters for all
layers are cached in the on-chip memory. This eliminates the
need to access DRAM (Dynamic Random Access Memory) in
between CONV layers and reduces the memory cost during
runtime. However, in case of the the MO implementation, a
fixed architecture (only one CONV layer) is implemented on
the PL part of the FPGA and the weights and inputs are loaded
from DRAM after each CONV layer completes processing.
Moreover, the communication overhead between PS and PL
should also be kept in mind during the deployment phase. We
experiment with following partitions between PS and PL sides:

o Without HW Offload: All the layers of the network
are implemented on the PS to analyze the network
performance without HW offloading.

« HW Offload with MO: The first and last layer of the
network are implemented on the PS while the rest of the
layers are executed on the PL side one by one. We tested
this configuration because the first and last layer have 16
and 125 output channels respectively, which make them
less compute intensive as compared to rest of the layers.

o Maximum HW Offload using FFD: All CONV layers
are deployed on the PL side. Only the post processing is
performed on the PS side.

o Vectorization of Post-processing: Intersection over
Union (IoU) calculation and Non-maximal suppression
(NMS) are vectorized using matrix operations to increase
throughput.

o Multi-threading: The previous technique is modified by
using multi-thread parallelism for post-processing steps.

Multi-threading is done using open source Python li-
braries.

Fig. 4 shows a high-level view of our final FPGA implemen-
tation.

V. RESULTS

To evaluate the performance of the proposed compression
techniques and FPGA architecture, we experiment with two
datasets, PASCAL-VOC and, Runway-Det as presented in
Section III. Two embedded hardware platforms, Xilinx Zynq
ZC706 FPGA development board with XC7Z045 chip and,
Nvidia Jetson Nano, are explored for embedded inference of
the QuantYolo topology. For deployment on the FPGA, the
Vivado High Level Synthesis (HLS) tool, which is a part of
Vivado Design Suite 2018.2, is used.
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Fig. 4. The CONYV, batch normalization, activation and maxpool layers of
QuantYOLO are implemented on the PL side, while pre-processing and post
processing are implemented on the PS side.



A. Performance Metrics

We use the following metrics to evaluate our network on
the above mentioned hardware platforms:

1) Mean Average Precision (mAP): It is the mean of the
average precision (AP) for all classes in a dataset. The Average
Precision (AP) for each class is the mean of precision values
for a range of recall values over O to 1. This metric measures
represents the accuracy of an object detection algorithm.

2) Throughput (Frames Per Second (FPS)): Frames per
second is the number of image frames processed in one sec-
ond. It is a metric to quantify the throughput of an algorithm.

3) Power Consumption: Each hardware platform operates
under different hardware setup that exhibits different power
consumption due to different peripherals that do not par-
ticipate in computations but contribute to the overall power
consumption. For fair comparison, we compute the consumed
power based only on power consumption of components that
participate during computation. Following formula is used to
calculate the power:

Powervalue = Powerdynamic - PO’LUG’I’idle (5)

where, Powergynamic 15 the power consumption of the com-
plete system while processing the CNN inference algorithm on
the hardware platform and, Power;q;. is the power consump-
tion of the complete system in the idle state. By using this
formula, we minimize the influence of power consumption of
the extra hardware and the peripherals.The power has been
measured physically using digital wall socket power meter
Voltcraft VC-870.

B. Accuracy comparison based on mAP

A total of eight experiments are performed for network
complexity reduction as described in Section III. Hence, we
are searching for an optimal solution to a multi-objective prob-
lem, it is considered as a Pareto optimization problem. The
Pareto-frontier chart in Fig 5, shows the mAP vs model size
trade-off for each of our implementations. It can be seen that
W1A4-FullQuant sits on an ideal spot on the Pareto-frontier.
It achieves a mAP score of 51.5% with a model size of only
2.75 MB. Although, W1A4-PartialQuant-2 achieves a higher
mAP score of 52.7%, the precision of 32-bits for the the input
image layer increases the computational complexity of the
network, which exponentially scales up resource utilization on
the FPGA. Our experiments show that extremely low bit-width
quantization for activations (2-bits) results in a significant loss
of mAP score for shallow networks. Moreover, for YOLO
networks, keeping the output layer at 32-bit precision helps in
maintaining the mAP score. Therefore, on basis of obtained
results and our hardware critical specifications, we selected the
W1A4-FullQuant model for FPGA implementation. The mAP
score, model size and number of parameters by combining
different compression techniques are compared in Table IV
along with the previous works.

Our QuantYOLO model achieves an impressive mAP score
as compared to previous works with a compact network of only
9 layers and 2.75 MB of size. We achieve a 21.8 x reduction
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Fig. 5. Pareto-frontier for mAP against model size for the PASCAL-VOC
dataset.

in model size of Tiny-YOLOv2 with minimal loss in mAP.
When compared to YOLO-LITE [12], we achieve 17.73%
higher mAP with a comparable model size. For depthwise
convolution, we outperform MobileNet v2 implementation in
[13] in terms of mAP with less parameters and a smaller
model size. When compared to previous quantization works
in [10], [33], we achieve higher mAP with lesser number of
parameters and smaller model size. Combining pruning with
quantization does result in a drop in mAP. However, even with
a pruned network, we achieve 44.2% mAP. Experiments with
pruning indicate that GM-based pruning achieved better results
for binarized networks as compared to the FN-based.

C. Throughput optimization on FPGA

Fig. 6 shows the throughput comparison of different hard-
ware implementation approaches presented in Section IV. As
a result of these explorations, we achieve a final throughput
of 21.7 FPS and 25.29 FPS with and without accounting for
the post-processing steps respectively.
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Fig. 6. FPS results for different hardware configurations on the ZC706 FPGA
development board.

D. Comparison With Previous Works

Table V presents the detailed comparison of our architecture
with existing architectures for object detection. Furthermore,
we also compare our architecture with the Nvidia Jetson Nano
embedded GPU. All values of FPS and power consumption
for our work are calculated by taking mean over 5 individual



TABLE IV

MAP COMPARISON ON PASCAL-VOC (NETWORK COMPRESSION TECHNIQUES USED BY EACH MODEL ARE GIVEN IN TABLE NOTES)

| Existing Literature | This Work
Model Tiny- YOLO- | Mixed MobileNet | Quantized Resnet18 QuantYOLO | Depthwise- | GM-
YOLO | LITE YOLOv3- | V2-YOLO | Tiny-YOLO | Faster [W1A4- FullPrec®* | Pruned-
v2 [281°| 121t LITE [13]'| v3 [13]® v2 [1012 RCNN [33]?| FullQuant]?* W1A4245
Weights Precision [bits] 32 32 32 32 1 1 1 32 1
Activations Precision [bits] | 32 32 32 32 4 16 4 32 4
No. of CONV Layers 9 7 34 76 9 17 9 9 9
Model Size [MB] 60 2.3 18.8 93.5 4.74 - 275 10.99 2.4
No. of Parameters [M] 15.86 - 5.089 23.27 15.86 10.999 6.38 29 5.45
mAP 57.1% 33.77% | 48.25% 13.26% 49.12% 47.0% 51.5% 48.8% 44.2%
* The numbers for Tiny-YOLOV2 are taken from [30].
! Reduced number of layers.
2 Network quantization.
3 Depthwise separable convolutions.
4 Layer-oriented filter pruning.
5 Filter pruning (GM or FN).
TABLE V TABLE VI

COMPARISON WITH PREVIOUS WORKS AND NVIDIA JETSON NANO

COMPARISON WITH EMBEDDED GPU FOR THE RUNWAY-DET

Platform Precision CONV  Latency FPS Power  Power eff.
Layers
[ms] (W] [FPS/W]
[19] Intel WI16A16 9 339 295!
Cyclone V
[20] Intel WB8A16 21 61.4 16291 40 0.41
Arria 10
GX 1150
[8] Xilinx W32A32 24 3.98
PYNQ
[14] Xilinx WIALl 9 11.1 2.61 425
PYNQ
[15] Xilinx WBAS 16 202 4.95! 2.32 2.13
PYNQ
[16] Xilinx WSAS 9 70.22 14.24
Zyng 7030
[17] Xilinx W32A32 24 744 1.341 1.17 1.15
ZC706
[18] Xilinx WB8A8 24 65 15.41 13 1.18
KU115
This Nvidia W32A32 9 153.14 6.53 4.06 1.61
Work  Jetson
Nano
This Xilinx WI1A4 9 39.54 25.29 1.92 13.17
Work  ZC706

L FPS not reported, calculated using 1/latency, considering latency= time
taken to process one image.

trials of inference over 105 samples. The power efficiency is
calculated by using the formula, Power ef f = PI“; Z fr.

The FPGA architecture achieves a throughput of 25.29
FPS as compared 6.53 FPS of the Nvidia Jetson Nano.
Furthermore, the power consumption of the FPGA architecture
is 1.92 W, which is 2.1x better than the embedded GPU. In
terms of power efficiency, FPGA is 8.2 better than the GPU
implementation. On the basis of these results, we conclude
that the FPGA is an ideal processing system for porting DL
models on the power-constrained UAVs.

In comparison to the previous works [8], [14]-[20] (see
Table V), our work achieves 1.6x higher throughput and is

Network Platform  Average FPS Power Power eff.
Precision W] [FPS/W]

Full-precision  Jetson 73.2% 6.92 4.02 1.72

(32-bit) Nano

QuantYOLO ZC706 70.1% 2542 190 13.38

(W1A4)

Fig. 7. Bounding box predictions for the Runway-Det Dataset.

3.1x energy efficient. On basis of these results, we conclude
that the object detection algorithms can greatly benefit from
the NN compression techniques during the inference phase.
Using full-precision (FP32) for the inference is of a negligible
benefit and only results in increased latency, hardware cost
and power consumption.

E. Results on the Runway-Det dataset

In addition to the PASCAL-VOC benchmark, the Quan-
tYOLO model is used for the Runway-Det dataset. Fig 7
shows the inference results of the selected samples from
the test dataset. The FPGA and GPU implementation results
are presented in Table VI. It can be seen from the results
that the proposed architecture achieves 3.7 higher FPS and,
consumes 2.12x less power than the embedded GPU. Fur-
thermore, our architecture is 7.78 x more power efficient than
the corresponding GPU implementation. From these results,
it is evident that the proposed object detection topology and



architecture are extremely favourable for low power embedded
devices such as drones and UAVs.

VI. CONCLUSION

In this paper, we present, QuantYOLO, a high throughput
and, power efficient object detection NN accelerator for re-
source and power constrained UAVs. We lower the complexity
of the Tiny-YOLOvV2 model by taking advantage of NN
compression techniques such as quantization, filter pruning
and, depthwise separable convolutions. As a result of these
explorations, the presented model that has 9 layers and, 2.75
MB model size with precision of 1-bit for weights and 4-bit
for activations. Our model achieves a mAP score of 51.5% on
PASCAL-VOC benchmark and 70.1% average precision on the
Runway-Det dataset. In comparison to the previous works, our
FPGA accelerator achieves 25.29 FPS while consuming 1.92
W power, which translates to a 1.6x and 3.1 x improvement in
terms of FPS and power efficiency respectively. Furthermore,
for the Runway-Det dataset, the presented architecture is
7.78 x power efficient as compared to the Nvidia Jetson Nano
embedded GPU. In the future, we aim to extend this work to
perform object tracking.
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