
Performance Evaluation and Benchmarking of
Six-Page Segmentation Algorithms

Faisal Shafait, Daniel Keysers, and Thomas M. Breuel

Abstract—Informative benchmarks are crucial for optimizing the page segmentation step of an OCR system, frequently the

performance limiting step for overall OCR system performance. We show that current evaluation scores are insufficient for diagnosing

specific errors in page segmentation and fail to identify some classes of serious segmentation errors altogether. This paper introduces

a vectorial score that is sensitive to, and identifies, the most important classes of segmentation errors (over, under, and mis-

segmentation) and what page components (lines, blocks, etc.) are affected. Unlike previous schemes, our evaluation method has a

canonical representation of ground-truth data and guarantees pixel-accurate evaluation results for arbitrary region shapes. We present

the results of evaluating widely used segmentation algorithms (x-y cut, smearing, whitespace analysis, constrained text-line finding,

docstrum, and Voronoi) on the UW-III database and demonstrate that the new evaluation scheme permits the identification of several

specific flaws in individual segmentation methods.

Index Terms—Document page segmentation, OCR, performance evaluation, performance metric.

Ç

1 INTRODUCTION

THE task of page segmentation is to divide the document
image into homogeneous zones, each consisting of only

one physical layout structure (text, graphics, pictures, . . .).
Therefore, the performance of optical character recognition
(OCR) systems depends heavily on the page segmentation
algorithm used. Over the last three decades, several page
segmentation algorithms have been proposed in the
literature (for a literature survey, please refer to that in
[1], [2], [3]). In this paper, we present three main
contributions to the state of the art in page segmentation:

1. Performance evaluation and comparison of six well-
known algorithms for page segmentation using a
state-of-the-art evaluation methodology [4]. We
identify a severe flaw in the evaluation scheme
when used for single column documents.

2. A novel, portable, and pixel-accurate representation
for arbitrarily shaped page segments.

3. Several performance measures to identify and
analyze different classes of segmentation errors
made by a page segmentation algorithm.

The rest of the introduction section presents an overview of
the state of the art in the above-mentioned areas and
describes how our work augments the state of the art.

The problem of automatic evaluation of page segmenta-
tion algorithms is increasingly becoming an important issue

[5], [6]. Major problems arise due to the lack of a common
data set, a wide diversity of objectives, a lack of meaningful
quantitative evaluation, and inconsistencies in the use of
document models. This makes the benchmarking of
different page segmentation algorithms a difficult task.
Recent page segmentation competitions [7], [8] address the
need for comparative performance evaluation under realis-
tic circumstances. However, a limitation of the competition-
based approach is that competing methods only participate
if they are implemented and used by a participant. It means
several well-known algorithms might not be a part of the
comparison at all.

The quantitative evaluation of page segmentation algo-
rithms has received some attention in the past. An approach
for measuring the quality of page segmentation algorithms
by analyzing the errors in the text recognized by OCR was
first proposed in [9]. However, text-based approaches have
found little use since they measure the output of multiple
steps and cannot be used to evaluate page segmentation
alone. Yanikoglu and Vincent [10] presented a region-based
page segmentation benchmarking environment, named
Pink Panther. Their approach is based on representing
regions as arbitrary polygons and, hence, becomes quite
complex and cumbersome to use. Liang et al. [11] proposed
a performance metric for document structure extraction
algorithms by finding the correspondences between de-
tected entities and ground truth. Das et al. [12] suggested an
empirical measure of performance of a segmentation
algorithm based on a graph-like model of the document.
However, their performance measure does not support
evaluation of non-Manhattan page layouts. Similar ap-
proaches have been presented for range image segmenta-
tion in [13] and for image segmentation in general [14]. Mao
and Kanungo [4] presented an empirical benchmarking
methodology based on text-line measure of page segmenta-
tion accuracy. This measure is particularly useful because it
does not make assumptions about the layout of the

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 30, NO. 6, JUNE 2008 941

. F. Shafait and D. Keysers are with the Image Understanding and Pattern
Recognition Research Group, German Research Center for Artificial
Intelligence (DFKI GmbH), D-67663 Kaiserslautern, Germany.
E-mail: {faisal.shafait, daniel.keysers}@dfki.de.

. T.M. Breuel is with the Department of Computer Science, Technical
University of Kaiserslautern, D-67663 Kaiserslautern, Germany.
E-mail: tmb@informatik.uni-kl.de.

Manuscript received 24 Apr. 2007; revised 10 Oct. 2007; accepted 5 Nov.
2007; published online 7 Dec. 2007.
Recommended for acceptance by L. O’Gorman and N. Lawrence.
For information on obtaining reprints of this article, please send e-mail to:
tpami@computer.org, and reference IEEECS Log
Number TPAMI-2007-04-0246.
Digital Object Identifier no. 10.1109/TPAMI.2007.70837.

0162-8828/08/$25.00 � 2008 IEEE Published by the IEEE Computer Society

document. Besides, it requires only text-line-level ground
truth. They have compared three research algorithms and
two commercial products using this method. We extend the
work by Mao and Kanungo [4] and add three more
algorithms to the comparison (Section 2). The algorithms
compared in [4] are x-y cut [15], docstrum [16], and the
Voronoi diagram-based approach [17]. The algorithms added
to the comparison in this work are the smearing algorithm
[18], whitespace analysis [19], and the constrained text-line
finding algorithm [20]. In addition, we also identify a
limitation of the evaluation scheme when it is used for
single-column documents and use a dummy segmentation
algorithm to highlight the problem in such cases. An analysis
of the errors coincides with our finding. We overcome this
limitation by presenting a vectorial score that helps in judging
the kind and extent of segmentation errors made by the
analyzed algorithm (Section 2.3). This score is particularly
useful in analyzing the behavior of a page segmentation
algorithm for a given set of parameters. Our performance
measures are based on a new way of representing layout
information by embedding it in the color channels of a
document image (Section 2.1). Such a representation allows
convenient interchange of ground truth and segmentation
results in terms of standard image formats.

We use the University of Washington III (UW-III) data
set [21] for performance evaluation and benchmarking of
the analyzed algorithms. The UW-III data set has a large
number of documents with different degradation types and
is one of the standard data sets for evaluating different
document analysis tasks. The main strength of the data set
is that, for each document, along with the ground-truth
information for words, text-lines, zones, and ASCII text, a
number of document and zone attributes are available. This
makes the database suitable for quantitatively evaluating a
wide variety of tasks related to document image analysis.
Researchers have used the UW-III data set for evaluating
their approaches related to different document analysis
tasks like page segmentation [4], [11], block classification
[22], layout analysis [23], table zone extraction [24], and
document image classification [25]. We discuss the experi-
ments performed and results obtained in Section 4, fol-
lowed by the conclusion in Section 5. We have reported
parts of the work presented in this paper in [26] and [27]. In
this paper, we extend the performance measures presented
in [27] by introducing the notion of correct segmentation.
Additionally, we explain our methods in more detail than
in [26] and [27], illustrating with visual examples where
necessary. We have also included a correlation analysis of
the errors made by each algorithm, which gives us
interesting insights into the similarities of the behavior of
different algorithms.

2 PERFORMANCE EVALUATION OF PAGE

SEGMENTATION ALGORITHMS

The performance evaluation measure proposed in [4] is
based on set theory. This measure is based on the
assumption that a text block can be easily segmented into
text-lines using horizontal projection. Let G be the set of all
of the ground-truth text-line in a document image and jGj

denote the cardinality of the set G. Then, three subsets of
text-lines are defined as follows:

1. The set of ground-truth text-lines that are missed ðCÞ,
that is, they are not part of any detected text region.

2. The set of ground-truth text-lines whose bounding
boxes are split ðSÞ, that is, the bounding box of a
text-line does not lie completely within one detected
segment.

3. The set of ground-truth text-lines that are horizon-
tally merged ðMÞ, that is, two horizontally over-
lapping ground-truth lines are part of one detected
segment.

The overall error rate is measured as the percentage of
ground-truth text-lines that are not identified correctly:

� ¼ jC [S [MjjGj : ð1Þ

A ground-truth text-line is said to lie completely within one
detected text segment if the area overlap between the two is
significant. Significance is determined using two length
thresholds in a number of pixels. The thresholds control the
tolerance level along the horizontal and vertical directions
such that differences in overlap less than the threshold in
that particular direction are ignored.

Despite the many useful features, there is also a
limitation of this approach. If a segmentation algorithm
just takes the whole page as one segment, the split and
missed errors vanish ðC ¼ ;; S ¼ ;Þ. Typically, for single-
column documents, M ¼ ;. Hence, without doing anything,
the segmentation accuracy can be high if there is a large
proportion of single-column document images in the test
data set. This effect was not considered in the original
evaluation [4]. To check the severity of the problem, we
have added a dummy segmentation algorithm into the
comparison that returns the whole page as one segment, as
discussed in Section 3.1.

We overcome this limitation by defining a vectorial score
that clearly identifies the common classes of segmentation
errors, including the undersegmentation problem identified
above. This score is based on a new representation scheme
for page segmentation described in Section 2.1. The
vectorial score is described in Section 2.3.

2.1 Representation of Page Segments

Layouts of a document image are generally categorized into
two main classes: Manhattan layouts and non-Manhattan
layouts [1]. Manhattan layouts are defined as layouts that
can be decomposed into individual segments by vertical
and horizontal cuts. For Manhattan layouts, the individual
zones can be represented by nonoverlapping rectangles.
This representation is particularly useful due to its
simplicity and segments of most of the structured docu-
ments, like technical journals or business letters, can be
represented by their bounding rectangles. Therefore, this
representation was adapted in the Document Attribute
Format Specification (DAFS) format [28] used for represent-
ing the ground-truth zones for the UW-III data set. The
DAFS format was developed with the intention of being
used as a standard for the representation of document

942 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 30, NO. 6, JUNE 2008

images. However, it did not come into widespread use and

other representations based on XML have emerged [29] for

Manhattan layouts. For non-Manhattan layouts, the zones

cannot be represented accurately by nonoverlapping rec-

tangles. Instead, an XML-based representation of document

zones by their bounding isothetic polygons was used in [7],

[8]. A common problem with these approaches is that they

need specialized software to view the files representing the

page segmentation, thereby limiting their portability and

ease of use.
To overcome these problems, we propose a new way of

representing the page segments in color image format.

Consider a document image decomposed into N homo-

geneous zones Zi, i ¼ 1; . . . ; N . The document segmentation

can be represented as an image in which each foreground

pixel is assigned, as its value, the index of the segment Zi to

which it belongs. In practice, the pixel-based representation

of page segmentation can be implemented as 24-bit RGB

color images. This enables the use of up to N ¼ 224 labels,

which will be sufficient for virtually all images that are of

interest. A particular color can be assigned to the page

background (for example, 0xffffff) and to the noise pixels

(for example, 0x000000). This representation of page

segmentation is particularly convenient because it can be

used to accurately represent different levels of layout in the

same image, as shown in Fig. 1. Second, it is independent of

the zone shape and it can be saved and exchanged using

any lossless color image format.

2.2 Preparation of Pixel-Level Ground Truth

An image of a 300-dpi scanned A4 document usually

contains over one million foreground pixels. The cost of

coloring all foreground pixels using their respective

segment label can be too high if all pixels are labeled

individually. To overcome this problem, we consider two

alternatives for preparing pixel-level ground truth.

1. A bounding polygon is drawn for each zone in the
page image. The polygon is filled with a color
representing the index of the zone contained inside
the polygon (Fig. 2b). Then, each foreground pixel is
assigned the color of the polygon that contains it
(Fig. 2c). This approach is suitable when separation
between zones in a page is significant. A benefit of
preparing pixel-level ground truth with this ap-
proach is that a polygon of any shape can be drawn.
For Manhattan layouts, a simple rectangle can do
the task. For non-Manhattan layouts, a polygon can
be quickly drawn around each zone. Hence, the cost
of producing ground truth in this way is equal to the
cost of producing any other bounding box-based
ground truth in the case of Manhattan layouts. For
non-Manhattan layouts, the cost for producing
pixel-level ground truth can be much lower than
other approaches because the polygons can be
arbitrarily shaped and need not tightly enclose the
containing zones.

2. If separation between page zones is not large, for
instance, in the case of text-lines, the approach of

SHAFAIT ET AL.: PERFORMANCE EVALUATION AND BENCHMARKING OF SIX-PAGE SEGMENTATION ALGORITHMS 943

Fig. 1. An example image to demonstrate color encoding of multiple layout levels. The top images show (a) word-level and (b) text-line-level

segmentation representation, whereas the bottom images show (c) zone-level and (d) multiple layout-levels information encoded in different color

channels of the same image.

creating ground truth with bounding polygons can
become cumbersome. In such a situation, another
approach can be taken. First, a line is drawn on a
zone such that it touches or passes through all of the
connected components of that zone (Fig. 2d). The
color of the line is chosen to be the index of that
zone. Then, connected components are extracted
from the page and all of the foreground pixels in a
connected component are assigned the color of the line
that touches or passes through that component
(Fig. 2e). In the final step, all small-sized components,
like i-dots, punctuation marks, etc., are assigned the
color of their closest neighbor if their distance to the
closest neighbor is less than a threshold, chosen equal
to x-height in our case. This step makes sure that any
components that might not have been intersected in
the first step get labeled as well.

Both of the above methods for creating pixel-level
ground truth can be applied using any off-the-shelf image
manipulation program like Gimp, MS-Paint, etc. These
methods were applied in creating ground truth for the
DFKI-1 warped documents data set used in the document
image dewarping contest [30] held with CBDAR 2007.

2.3 Performance Evaluation

Based on the pixel-accurate representation of page segmen-
tation, we define several performance measures to evaluate
different aspects of the behavior of a page segmentation
algorithm. Consider that we are given two segmentations in
image form, the hypothesized segmentation H and the
ground truth G. The images representing these segmenta-
tions should have the same dimensions and, for each
corresponding pair of pixels in the two images, either both

pixels should belong to the background or both to the
foreground. To compare the quality of a hypothesized
segmentation against a ground-truth segmentation, we can
construct a weighted bipartite graph called a pixel-corre-
spondence graph [31] as follows: We associate with each color
value in H or in G one node of the components in the graph,
where the two components correspond to pixels of H and
G, respectively. Since each segment has a unique color, each
node represents a unique segment (either in H or in G). A
segment that is labeled with a special color, like noise (see
Section 2.1), can be removed at this stage. Then, an edge is
constructed between two nodes such that the weight of the
edge equals the number of foreground pixels in the
intersection of the regions covered by the two segments
represented by these nodes. If their corresponding segments
do not overlap in H and G, no edge is needed.

If the hypothesized segmentation H agrees perfectly
with the ground-truth segmentation G, then the pixel-
correspondence graph will be a perfect matching. That is,
each node in the two component of the graph has exactly
one edge incident to it. If there are differences between the
two segmentations, then the graph will not be a perfect
matching. Instead, a node representing a segmentation in H
or G may have multiple edges.

If P is the total number of pixels corresponding to one
node (segment), M is the number of edges incident to that
node, and wi, i ¼ 1; 2; . . . ;M, is the weight associated with
each edge, then P ¼

PM
i¼1 wi. For each node on either

component of the graph, wi=P gives the fraction of pixels
overlapping with each of its corresponding nodes.

An edge between two nodes is considered significant if
wi=P � tr or wi � ta, where tr is a relative threshold and ta
is an absolute threshold. The use of tr allows a tolerance in

944 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 30, NO. 6, JUNE 2008

Fig. 2. An example image to demonstrate the process of generating pixel-level ground truth. The zone-level ground truth is prepared by first drawing

a polygon around each zone (b) and then transferring the colors to the foreground pixels in the zone (c). The text-line-level ground truth is created by

drawing lines (d) and then labeling the connected components touching these lines with the line color (e). (a) Original image. (b) Labeled zones.

(c) Generated zone level ground truth. (d) Labeled text-lines. (e) Generated text-line ground truth.

the evaluation by ignoring fractional overlaps less than tr.

In practice, we have found tr ¼ 0:1 to be a good choice.

However, if a segmentation algorithm completely fails and

gives the whole page as one segment, regions containing

less than 10 percent of the foreground pixels may get

ignored. Therefore, an absolute threshold ta is used to

ensure that overlaps of more than ta pixels are not ignored.

The exact value of ta can be chosen based on the properties

of the document images under consideration (minimum

font size, resolution, . . .) and the desired geometric

accuracy of the evaluation results. For the UW-III document

images, we used ta ¼ 500 pixels for zone-level evaluation

and ta ¼ 100 pixels for text-line-level evaluation.
If there is more than one significant edge incident to a

node in G or in H, the node is considered oversegmented or

undersegmented, respectively. Using these definitions, we

can introduce several measures for evaluating a page

segmentation algorithm. An illustration of these measures

is given in Fig. 3. These measures are defined as follows:
Total correct segmentations ðTcÞ. The total number of

one-to-one matches between the ground-truth components

and the segmentation components.
Total oversegmentations ðToÞ. The total number of

significant edges that ground-truth components have minus

the number of ground-truth components to which at least

one significant edge is incident.
Total undersegmentations ðTuÞ. The total number of

significant edges that segmentation components have

minus the number of segmentation components to which

at least one significant edge is incident.
Oversegmented components ðCoÞ. The number of

ground-truth components having more than one significant

edge.
Undersegmented components ðCuÞ. The number of

segmentation components having more than one significant

edge.

Missed components ðCmÞ. The number of ground-truth
components that did not match any foreground component
in the hypothesized segmentation.

False alarms ðCfÞ. Number of components in the
hypothesized segmentation that did not match any fore-
ground component in the ground-truth segmentation.

3 ALGORITHMS FOR PAGE SEGMENTATION

We selected six representative algorithms for page segmen-
tation. Furthermore, we have introduced a dummy algo-
rithm to determine a base line of the possible performance.
Brief descriptions of each algorithm and its parameters are
described in turn in the following.

3.1 Dummy Algorithm

The dummy segmentation algorithm always outputs the
whole page as one segment. The purpose of this algorithm
is to see how well we can perform without doing anything.
Then, the performance of other algorithms can be seen as
gains over that achieved by the dummy algorithm. Using
the dummy algorithm also highlights limitations of the
evaluation scheme, as detailed in Section 4.1.

3.2 X-Y Cut

The x-y cut segmentation algorithm [15], also referred to as
the recursive x-y cuts (RXYC) algorithm, is a tree-based top-
down algorithm. The root of the tree represents the entire
document page. All of the leaf nodes together represent the
final segmentation. The RXYC algorithm recursively splits
the document into two or more smaller rectangular zones,
which represent the nodes of the tree. At each step of the
recursion, the horizontal and vertical projection profiles of
each node are computed. To compute the valleys in the
projection profile histograms, noise removal thresholds tnx
and tny are used. First, the thresholds tnx and tny are scaled
linearly based on the current zone’s width and height. Then,
all bins of the histograms that contain values less than the

SHAFAIT ET AL.: PERFORMANCE EVALUATION AND BENCHMARKING OF SIX-PAGE SEGMENTATION ALGORITHMS 945

Fig. 3. Example image to illustrate different performance measures. The left image shows two color-coded document images. A pixel correspondence
graph obtained from these images is shown on the right side. The nodes corresponding to the ground-truth segments are labeled 1-7, whereas the
nodes in the segmented image are labeled a-i. Only significant edges are shown in the pixel correspondence graph. Based on the definitions given in
Section 2.3, the values of each performance measure for this example are given on the right side of the graph. (a) Ground-truth image. (b) Segmented
Image.

scaled thresholds are set to zero. The valleys along the
horizontal and vertical directions, vx and vy, are then
compared to the corresponding predefined thresholds tx
and ty. If the valley is larger than the threshold, the node is
split at the midpoint of the wider of vx and vy into two
children nodes. The process continues until no leaf node can
be split further.

3.3 Smearing

The run-length smearing algorithm (RLSA) [18] works on
binary images, where white pixels are represented by 0s
and black pixels by 1s. The algorithm transforms a binary
sequence x into y according to the following rules:

1. 0s in x are changed to 1s in y if the number of
adjacent 0s is less than or equal to a predefined
threshold C.

2. 1s in x are unchanged in y.

These steps have the effect of linking together neighbor-
ing black areas that are separated by less than C pixels. The
RLSA is applied row-wise to the document using a
threshold tsh and column-wise using threshold tsv, yielding
two distinct bitmaps. These two bitmaps are combined in a
logical AND operation. Additional horizontal smearing is
done to obtain a smoothed final bitmap using a smaller
threshold, tsm. Then, connected component analysis is
performed on this bitmap to obtain document zones. The
mean horizontal run length Rm of the black pixels in the
original image and the mean block height Hm are
calculated. Then, a block is classified into a text block if

R < ftrRm and H < fthHm; ð2Þ

where ftr and fth are two thresholds, R is the horizontal run
length of the black pixels in the current block, and H is the
block height.

3.4 Whitespace Analysis

The whitespace analysis algorithm described by Baird [19]
analyzes the structure of the white background in docu-
ment images. The first step is to find a set of maximal white
rectangles (called covers) whose union completely covers the
background. Breuel’s algorithm for finding the maximal
empty whitespace [20] is used in our implementation for
this step. These covers are then sorted with respect to the
sort key, KðcÞ:

KðcÞ ¼
ffi
areaðcÞ �Wð log2 heightðcÞ=widthðcÞð Þj jÞ

p
; ð3Þ

where c is the cover and Wð:Þ is a dimensionless weighting
function. Baird [19] chose a special weighting function
using experiments on a particular data set. We used an
approximation of the original weighting function as

WðxÞ ¼
0:5 if x < 3
1:5 if 3 � x < 5
1 if x � 5:

8<
: ð4Þ

The purpose of the weighting function is to assign higher
weight to tall and long rectangles because they are
supposed to be meaningful separators of text blocks.

In the second step, the rectangular covers ci,
i ¼ 1; . . . ;m, where m is the total number of whitespace

covers, are combined one by one to generate a corre-
sponding sequence sj, j ¼ 1; . . . ;m of segmentations. A
segmentation is the uncovered area left by the union of the
covers combined so far. Before a cover ci is unified to the
segmentation sj, a trimming rule is applied to avoid early
segmentation of narrow blocks. The unification of covers
continues until the stopping rule (5) is satisfied:

KðsjÞ � fw � j=m � ts; ð5Þ

where KðsjÞ is the sort key KðcjÞ of the last cover unified in
making segmentation sj, fw is a weighting factor, and ts is
the stopping threshold. At the final segmentation, con-
nected components within the remaining uncovered parts
are candidate text regions. Since the uncovered regions thus
obtained are not necessarily rectangular in shape, we take
bounding boxes of these uncovered regions as representa-
tive of the text segments.

3.5 Constrained Textline Detection

The layout analysis approach by Breuel [20] finds text-lines
as a three step process:

1. Find empty whitespace rectangles that completely
cover the page background. The algorithm for
finding maximal empty rectangles is described in
[20]. The algorithm returns whitespace rectangles in
the order of a decreasing area. The rectangles are
allowed a maximum overlap of to. Usually, 300 rec-
tangles are sufficient to completely cover the page
background.

2. The whitespace rectangles are evaluated as candi-
dates for column separators or gutters based on their
aspect ratio, width, and proximity to text-sized
connected components.

3. The whitespace rectangles representing the gutters
are used as obstacles in a robust least square text-line
detection algorithm [32]. Then, the bounding box of
all the characters making the text-line is computed.

The method was merely intended by its author as a
demonstration of the application of two geometric algo-
rithms and not as a complete layout analysis system;
nevertheless, we included it in the comparison because it
has already been proven useful in many applications. It is
also nearly parameter free and resolution independent.

3.6 Docstrum

The docstrum algorithm proposed by O’Gorman [16] is a
bottom-up approach based on the nearest neighborhood
clustering of connected components extracted from the
document image. After noise removal, the connected
components are separated into two groups, one with
characters of the dominant font size and another one with
characters in titles and section headings, using a character
size ratio factor fd. Then, K nearest neighbors are found for
each connected component. A histogram of the distance and
angle of each connected component from its K nearest
neighbors is computed. The peak of the angle histogram
gives the dominant skew in the document image. This skew
estimate is used to compute within-line nearest neighbor
pairs. Then, text-lines are found by computing the transitive
closure on within-line nearest neighbor pairings using a

946 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 30, NO. 6, JUNE 2008

threshold ttc. Finally, text-lines are merged to form text
blocks using a parallel distance threshold tpa and a
perpendicular distance threshold tpe.

3.7 Voronoi Diagram-Based Algorithm

The Voronoi diagram-based segmentation algorithm by
Kise et al. [17] is also a bottom-up algorithm. In the first
step, it extracts sample points from the boundaries of the
connected components using a sampling rate rs. Then, noise
removal is done using a maximum noise zone size thresh-
old tn, in addition to width, height, and aspect ratio
thresholds. After that, a Voronoi diagram is generated
using sample points obtained from the borders of the
connected components. The Voronoi edges that pass
through a connected component are deleted to obtain an
area Voronoi diagram. Finally, superfluous Voronoi edges
are deleted to obtain boundaries of document components.
An edge is declared superfluous if it satisfies any of the
following criteria:

1. The minimum distance d between its associated
connected components is less than the intercharacter
gap in body text regions.

2. The minimum distance d between its associated
connected components is less than the interline
spacing times a margin control factor fm or the area
ratio of the two connected components is above an
area ratio threshold ta.

3. At least one of its terminals is neither shared by
another Voronoi edge nor lies on the edge of the
document image.

The output of the algorithm consists of arbitrarily shaped
regions bounded by Voronoi edges. Since we evaluate all
algorithms on document pages with Manhattan layouts, we
represent each Voronoi region by its bounding box.

4 EXPERIMENTS AND RESULTS

Based on the performance measures defined in Section 2,
we evaluated the performance of six algorithms for page
segmentations, namely, x-y cut [15], the smearing algorithm
[18], whitespace analysis [19], docstrum [16], the Voronoi
diagram-based approach [17], and the constrained text-line
finding algorithm [20]. The evaluation of the algorithms
was done on the University of Washington III (UW-III)
database [21].

The UW-III database consists of 1,600 English document
images with Manhattan layouts scanned from different
archival journals with manually edited ground truth of
entity bounding boxes. These bounding boxes enclose text
and nontext zones, text-lines, and words. For each docu-
ment, a number of page and zone attributes are available as
well. The UW-III data set provides a good basis for
comparative evaluation of page segmentation algorithms
since the majority of documents available today, like books,
journals, magazines, letters, etc., have Manhattan layouts.
Researchers have used the University of Washington data
set for quantitatively evaluating different document analy-
sis tasks like noise removal [33], [34], skew estimation [35],
table recognition [24], document zone classification [22],
[36], and layout-based document image retrieval [37].

Manhattan layouts pose specific constraints on page layout
that can be used by page segmentation algorithms to
achieve lower error rates. To evaluate the performance of
page segmentation algorithms on non-Manhattan layouts, it
would be useful to experiment on a data set containing non-
Manhattan layouts only. This way, one can find which
algorithms are suitable for Manhattan layouts and which
algorithms are suitable for non-Manhattan layouts.

We have divided the experiments into two parts:

1. Benchmarking of the algorithms based on the text-
line-based measure of block segmentation accuracy
given by (1).

2. Performance evaluation of the algorithms based on the
vectorial score defined in Section 2.3.

The first experiment augments the work by Mao and
Kanungo [4] and adds three more algorithms to the
comparison. We also do a detailed analysis of the errors
to show that the limitation of the algorithm as pointed out
in Section 2 is reflected in the results. We also show that this
gives completely misleading results in certain cases. The
second experiment demonstrates the benefits of our
vectorial-score-based evaluation method as compared to
the single-score-based measure.

4.1 Benchmarking

The benchmarking of the page segmentation algorithms
was done on a subset of the UW-III database. We chose the
978 images that correspond to the UW-I data set pages, as
was done in [4]. Only the text regions are evaluated and
non-text regions are ignored. The data set is divided into
100 training images and 878 test images. The purpose of the
training images is to find suitable parameter values for the
segmentation algorithms. The experiments are done using
both default parameters, as mentioned in the respective
papers, and tuned/optimized parameters (Table 1). This
allows us to assess how much the performance of each
algorithm depends on the choice of good parameters for the
task. The parameters for the x-y cut algorithm are highly
application dependent, so no default parameters are
specified in [15]. The optimized parameter values used for
x-y cut, docstrum, and Voronoi-diagram-based algorithms
were the same as in [4]. For the smearing, whitespace, and
constrained text-line finding algorithms, we experimented
with different parameter values and selected those that
gave the lowest error rates on the training set.

SHAFAIT ET AL.: PERFORMANCE EVALUATION AND BENCHMARKING OF SIX-PAGE SEGMENTATION ALGORITHMS 947

TABLE 1
Parameter Values Used for Each Algorithm

in the Evaluation Given in Table 2

For the dummy, x-y cut, smearing, and text-line finding algorithms, the
default and optimized parameters are the same.

We have used the page segmentation evaluation toolkit

(PSET) [38] that implements the training and evaluation

scheme in [4]. The average text-line detection error rate for

each algorithm is given in Table 2. The high standard

deviation in the error rate of each algorithm shows that the

algorithms work very well on some images, while failing

badly on some other images.
Table 3 shows the error rates of the algorithms separated

for different document characteristics. First, the documents

were separated according to the “maximum columns

number” attribute recorded for each page. There are 362,

449, and 67 one, two, and three-column documents in the

test set of 878 pages, respectively. We can observe that the

smearing, whitespace, and text-line algorithms perform

much worse on one-column documents than on average.

This behavior can be explained by the stronger effect of the

noise blocks occurring in photocopied images for these one-

column documents because each line is affected. We further

investigated this hypothesis by separating the documents

according to their “degradation type” attribute. There are

776 photocopied and 102 directly scanned documents in the

test set. The respective results are shown in Table 3. We can

observe that the algorithms performing worst on one-column

documents in fact also perform worst on the photocopied

images due to the noise blocks. Interestingly, the docstrum

algorithm especially does not gain accuracy for clean

documents, while the Voronoi-based algorithm still performs

best. The smearing, whitespace, and text-line algorithms are

most affected by the photocopy effects. This suggests that

they would perform better for current layout analysis tasks in

which most documents are directly scanned.

Fig. 4 shows a box plot of the error rates observed for
each algorithm. The boxes in the box plot represent the
interquartile range, that is, they contain the middle
50 percent of the data. The lower and upper edges represent
the first and third quartiles, whereas the middle line
represents the median of the data. The notches represent
the expected range of the median. The “whiskers” on the
two sides show inliers, that is, points within 1.5 times the
interquartile range. The outliers are represented by small
circles outside the whiskers. We can observe the following
details: A ranking of the algorithms based on their median
error would deviate from the ranking based on the average
error. Remarkably, the docstrum algorithm does not make
any errors for more than 50 percent of the pages in the test
set. This performance is not achieved by any other
algorithm. This might be a property that would be
preferable in certain applications, while, for other applica-
tions, the average error rate may be more important.

To study the similarities in the behavior of different
algorithms, we plot the correlation of the errors made by
each algorithm in Fig. 5. Each dot in the correlation plot
represents one document image. The horizontal and vertical
axis represent the error made by the corresponding
algorithms. It can be seen from the correlation plot that
the docstrum and Voronoi algorithms show strong correla-
tion because they both are bottom-up approaches. Also, the
x-y cut and the dummy algorithm are highly correlated.
This is due to the fact that the x-y cut algorithm fails on
documents with a large amount of noise and reports the
whole page as one segment, which is the same output as
generated by the dummy algorithm. When this happens for
a single column document, the error rate computed by (1) is
zero. However, in the case of single-column documents
with a large amount of noise, it is not possible to segment
them into text-lines merely by horizontal projection. Hence,
the error rates reported in these cases give misleading
results. An example of such a document from the test set is
shown in Fig. 6. Since there are only a few images in the test
set that fall into this category, the experimental results are
still valid. An interesting observation that can be made from
the correlation plot is that, for each algorithm, there are
some documents on which it performs better than all of the
other algorithms. This indicates that combining the output
of more than one algorithm might yield better results.

948 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 30, NO. 6, JUNE 2008

TABLE 2
The Evaluation Results for Different Page Segmentation
Algorithms on 100 Training Images and 878 Test Images

The results are reported in terms of percentage of text-lines detection
errors (1).

TABLE 3
Text-Line Detection Errors (Percent) for Each of the Algorithms
Separated for One, Two, and Three-Column Documents and

Separated for Photocopies or Direct Scans

Fig. 4. Box plot for the results obtained with optimized parameters on the

test data.

4.2 Performance Evaluation

The performance of the six-page segmentation algorithms
was evaluated on the complete UW-III data set based on the
measures defined in Section 2.3. These measures evaluate
different aspects of a page segmentation algorithm for a
given parameter setting. The goal of these performance
measures is not to optimize the parameters of an algorithm
on this basis because the importance of different measures
is entirely application-dependent. If an OCR system expects
single text-line images as input, undersegmentation (for
example, putting two consecutive lines together) poses a
much more serious problem than oversegmentation (like
segmenting a text-line into words). If the OCR system
accepts both text-lines and text blocks as input, the only
major problem is undersegmentation (for example, merging
two text columns). In any case, the ground truth should also
fulfill the demands of the target application. For instance,
for single-line OCR, text-line-level ground truth should be
used, although, for block-level OCR, either text-column or
text-zone level ground truth should be used. Since the
parameters of the page segmentation algorithms given in
Table 1 were optimized with respect to block-level OCR
application, these parameters can be used in these evalua-
tions as well. The parameters for the x-y cut, whitespace
analysis, docstrum, and Voronoi diagram-based algorithms
were tuned to segment text zones. Hence, they were
evaluated on zone-level ground truth with the results given

in Table 4. The smearing and the constrained text-line
finding algorithms locate text-lines in the given image.
Therefore, they are evaluated on text-line-level ground
truth with the results given in Table 5.

A problem with the text-zone-level ground truth, in the

UW-III data set, is that a single paragraph is considered one

text zone. Hence, two consecutive paragraphs on the same

page make two different zones. In many documents, the

segmentation of text columns into paragraphs is indicated

by indentation rather than spacing. Determining para-

graphs from indentations is usually a separate processing

step. Therefore, an evaluation based on paragraph-level

ground truth may not correctly reflect the performance of a

page segmentation algorithm by giving more underseg-

mentation errors than the algorithm actually made.
We modified the ground truth for UW-III to get text zones

instead of paragraphs. For this purpose, we first specified a
partial order of the text paragraphs based on their spatial
relationships and then used a topological sorting algorithm to
find the reading order, as in [23]. Then, the bounding boxes of
two consecutive paragraphs in the reading order were
merged if their start and end positions along the horizontal
direction are within five pixels of each other. These modified
text zones were used to evaluate the page segmentation
algorithms with the results, as shown in Table 6.

SHAFAIT ET AL.: PERFORMANCE EVALUATION AND BENCHMARKING OF SIX-PAGE SEGMENTATION ALGORITHMS 949

Fig. 5. Correlation plot of the errors made by each algorithm. Each dot in the correlation plot represents one document image. The horizontal and

vertical axes represent the error made by the corresponding algorithms.

950 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 30, NO. 6, JUNE 2008

Fig. 6. Segmentation results from applying each algorithm to an image (D047) in the test set. The error rates calculated according to [4] (1) show that

the x-y cut algorithm performs the best in this case, which is clearly misleading. (a) X-Y cut ð� ¼ 0:000Þ. (b) Smearing ð� ¼ 0:976Þ. (c) Whitespace

ð� ¼ 0:463Þ. (d) Docstrum ð� ¼ 0:561Þ. (e) Voronoi ð� ¼ 0:561Þ. (f) Text-line ð� ¼ 0:756Þ.

TABLE 4
Different Types of Errors Made by Each Algorithm on the Original Zone-Level Ground Truth

Each text paragraph is considered a separate text zone. All entries are normalized by the total number of zones, 24,247, and are expressed as
percentage. The column labels are total correct segmentations ðTcÞ, total oversegmentations ðToÞ, total undersegmentations ðTuÞ, oversegmented
components ðCoÞ, undersegmented components ðCuÞ, missed components ðCmÞ, and false alarms ðCf Þ.

TABLE 5
Different Types of Errors Made by Each Algorithm on Text-Line-Level Ground Truth

For a key to column labels, please refer to Table 4. All entries are normalized by the total number of text-lines, 105,443, and are expressed as
percentage.

The results of applying each algorithm to an example

image are shown in Fig. 7. Based on the results in Tables 5

and 6, we can make the following observations about each

algorithm:

. The dummy algorithm has no correct segmentations,
and all of the components are undersegmented.

. The x-y cut algorithm fails in the presence of noise
and tends to take the whole page as one segment.
This results in many undersegmentation errors.

. The whitespace algorithm is sensitive to the stopping
rule. Early stopping results in a higher number of
undersegmentation errors, while late stopping results
in more oversegmentation errors. The whitespace

SHAFAIT ET AL.: PERFORMANCE EVALUATION AND BENCHMARKING OF SIX-PAGE SEGMENTATION ALGORITHMS 951

TABLE 6
Different Types of Errors Made by Each Algorithm on Modified Zone-Level Ground Truth

For a key to column labels, please refer to Table 4.

Fig. 7. Segmentation results from applying each algorithm to an image (A005) in the test set. The page contains a title in large font and a big noise
strip along the right border. (a) The x-y cut algorithm fails in the presence of noise and tends to take the whole page as one segment. (b) The
smearing algorithm also classifies the detected regions as text/nontext and thus misses the lines joined by the noise bar. The (c) whitespace,
(d) docstrum, and (e) Voronoi algorithms split the title lines due to the large font size and big interword spacing. (f) The text-line finding algorithm. Due
to the noise bar, several characters on the right side of each line in the second column were merged with the noise bar and the text-line finding
algorithm did not include these characters.

algorithm also made few missed errors because all
connected components with width larger than half the
page width or height greater than half the page height
were removed prior to the computation of white-
spaces. Hence, separator lines in the header or footer,
which are considered as zones in UW-III ground truth,
were missed by the algorithm.

. In the Voronoi and docstrum algorithms, the inter-
character and interline spacings are estimated from
the document image. Hence, spacing variations due to
different font sizes and styles within one page result in
oversegmentation errors in both algorithms. For
instance, in many cases, they fail to estimate the
interline distance correctly and, hence, split the zones
into individual text-lines, resulting in a large number
of oversegmentation errors. The number of segmen-
ted zones for these two algorithms is much higher than
the number of zones in the ground truth. In some
cases, text-lines in page titles are incorrectly segmen-
ted (see Fig. 7) due to a large variation in font size.

. The smearing algorithm classifies text-lines merged
with noise blocks as nontext, resulting in a large
number of missed errors.

. The major part of the errors made by the constrained
text-line finding algorithm are missed errors. Single
digit page numbers are missed by the text-line finding
algorithm because it requires at least two connected
components to form a line. In some cases, the
characters from two consecutive lines are merged.
Hence, the bounding box of the lower text-line spans
across both text-lines, resulting in both oversegmenta-
tion and undersegmentation errors.

The choice of the values of thresholds tr and ta defining
significant edges is application-dependent. In the case of
OCR, it might be important to keep the thresholds low so
that even a missed dot is reported as an error. However,
other applications, like layout-based document image
retrieval, have less strict demands on the geometric accuracy

of page segmentation. To evaluate the sensitivity of the
performance measures with respect to the thresholds tr and
ta, we have conducted an experiment. We have chosen the
Voronoi algorithm as a sample page segmentation algorithm
and have observed the changes in the number of reported
total oversegmentation errors as the values of the thresholds
tr and ta are varied over a broad range. The algorithm was run
over the complete UW-III data set. Then, the output was
compared to the zone-level ground truth using different
combinations of tr and ta. The resulting plot is shown in Fig. 8.
From the plot, it can be noticed that setting either tr or ta to a
very low value makes the performance measure independent
of the other threshold. As expected the number of detected
total oversegmentations decreases when the values of both
thresholds are increased simultaneously. For OCR applica-
tions, just setting ta to a very small value, for instance, equal to
the size of a dot, and ignoring tr altogether might be a good
choice. In the case of layout-based retrieval, we have to
consider both thresholds because the size of small zones like
page numbers might be smaller than a moderately chosen
value of ta. In such a case, tr helps by keeping the threshold
low for small zones.

The average runtime of the evaluated page segmentation
algorithms is shown in Fig. 9. The timing of the algorithms
cannot be directly compared because of the differences in
their input and output. The whitespace, docstrum, Voronoi,
and x-y cut algorithms give text blocks that still have to be
separated into text-lines, whereas the constrained text-line
finding algorithm directly gives the text-lines as output.
Second, the smearing algorithm also includes a block-
classification step, which is missing in other algorithms.
Furthermore, the docstrum, whitespace, and constrained
text-line finding algorithms depend on the computation of
connected components in the image, which were calculated
offline and stored in the database. In general, the x-y cut,
docstrum, and Voronoi algorithms took less than half the
time as compared to the smearing, whitespace analysis, and
constrained text-line finding algorithms.

952 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 30, NO. 6, JUNE 2008

Fig. 8. A plot of the values of total oversegmentations made by the

Voronoi algorithm as the values of thresholds tr and ta defining

significant edges are changed.

Fig. 9. Average runtime for each algorithm on the UW-III data set. The
experiment was run on an AMD Opteron 2.4 GHz machine running
Linux.

4.3 Recommendations

Based on the experimental results and observations, the
following recommendations can be made about the choice
of page segmentation algorithm for different applications
and document types.

. For clean documents with little or no skew, the x-y
cut algorithm might be a good choice as it is fast and
easy to implement.

. For a homogeneous collection of documents (same
resolution, similar layouts, similar font sizes, and
styles) with a variable amount of noise, the docstrum
and Voronoi algorithms can be used. However, the
parameters of these algorithms should be tuned to
segment the given document collection to obtain
good results.

. For documents containing many font sizes and
styles, the constrained text-line finding algorithm
works best because it is based on geometric models
that are invariant to font size, font style, and scan
resolution.

. For a diverse document collection with documents
having different font sizes and layouts or documents
scanned at different resolutions, the constrained
text-line finding algorithm is a good choice because
it is nearly parameter-free.

. For non-Manhattan layouts, or layouts having text in
different orientations, the Voronoi algorithm can be
a good choice.

One problem with the evaluated page segmentation
algorithms is that they give a single segmentation of a page
without any confidence value. Therefore, if the output has
to be verified manually, one has to look at the segmentation
done for each page individually. This can be very
cumbersome, even prohibitive, for large-scale applications
like Google book search [39]. One solution to this problem is
to do page segmentation in a probabilistic framework,
allowing the operator to look at only those pages for which
the confidence value returned by the algorithm is low.
Hence, in our opinion, an important direction of future
research in page segmentation will be to develop probabil-
istic algorithms that can handle real-world documents.

5 CONCLUSION

We presented an approach for evaluating page-segmenta-
tion algorithms using color-based representation. The color-
based representation of segmentation is independent of
zone shape and it can be saved and exchanged using any
lossless color image format. Instead of using a single score
for the performance of each algorithm, different aspects of
the algorithms are evaluated separately. Depending on the
target application, different error measures may be
weighted according to their significance in that application.
Using these performance measures, we have analyzed the
strengths and weaknesses of six popular algorithms for
page segmentation.

Our experiments showed that the x-y cut and the
smearing algorithms fail to segment a page in the presence
of noise. The whitespace analysis algorithm is sensitive to
the stopping rule and results in either oversegmentations or

undersegmentations. The docstrum and the Voronoi algo-
rithms tend to oversegment title and section headings if the
font size is much different from body text in that page. The
constrained text-line finding algorithm misses single-digit
page numbers as it requires at least two components to
make a line.

Based on our experiments, we can conclude that, for a
homogeneous document collection with a large proportion
of documents with Manhattan layouts, the docstrum and
Voronoi algorithms are the best choice. In the case of a
heterogeneous document collection with different font
sizes, styles, and scan resolutions, the constrained text-line
finding algorithm appears to be the best choice.

ACKNOWLEDGMENTS

This work was partially funded by the BMBF (German
Federal Ministry of Education and Research), project IPeT
(01 IW D03).

REFERENCES

[1] R. Cattoni, T. Coianiz, S. Messelodi, and C.M. Modena, “Geo-
metric Layout Analysis Techniques for Document Image Under-
standing: A Review,” IRST Technical Report 9703-09, 1998.

[2] G. Nagy, “Twenty Years of Document Image Analysis in PAMI,”
IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 22, no. 1,
pp. 38-62, Jan. 2000.

[3] S. Mao, A. Rosenfeld, and T. Kanungo, “Document Structure
Analysis Algorithms: A Literature Survey,” Proc. SPIE Electronic
Imaging, vol. 5010, pp. 197-207, Jan. 2003.

[4] S. Mao and T. Kanungo, “Empirical Performance Evaluation
Methodology and Its Application to Page Segmentation Algo-
rithms,” IEEE Trans. Pattern Analysis and Machine Intelligence,
vol. 23, no. 3, pp. 242-256, Mar. 2001.

[5] F. Lotti, P. Heroux, S. Adam, G. Sanchez, E. Valveny, P. Dosch, and
J. Llados, “Performance Analysis and Evaluation Working Group
Report,” Document Analysis Systems, http://www.dsi.unifi.it/
DAS04/DASPerfEv.pdf, Sept. 2004.

[6] A. Antonacopoulos, D. Karatzas, and D. Bridson, “Ground Truth
for Layout Analysis Performance Evaluation,” Document Analysis
Systems, pp. 302-311, Feb. 2006.

[7] A. Antonacopoulos, B. Gatos, and D. Karatzas, “ICDAR 2003 Page
Segmentation Competition,” Proc. Seventh Int’l Conf. Document
Analysis and Recognition, pp. 688-692, 2003.

[8] A. Antonacopoulos, B. Gatos, and D. Bridson, “ICDAR 2005 Page
Segmentation Competition,” Proc. Eighth Int’l Conf. Document
Analysis and Recognition, pp. 75-80, Aug. 2005.

[9] J. Kanai, T.A. Nartker, S.V. Rice, and G. Nagy, “Performance
Metrics for Document Understanding Systems,” Proc. Second Int’l
Conf. Document Analysis and Recognition, pp. 424-427, Oct. 1993.

[10] B.A. Yanikoglu and L. Vincent, “Ground-Truthing and Bench-
marking Document Page Segmentation,” Proc. Third Int’l Conf.
Document Analysis and Recognition, pp. 601-604, Aug. 1995.

[11] J. Liang, I.T. Phillips, and R.M. Haralick, “Performance Evaluation
of Document Structure Extraction Algorithms,” Computer Vision
and Image Understanding, vol. 84, pp. 144-159, 2001.

[12] A.K. Das, S.K. Saha, and B. Chanda, “An Empirical Measure of the
Performance of a Document Image Segmentation Algorithm,” Int’l
J. Document Analysis and Recognition, vol. 4, no. 3, pp. 183-190,
2002.

[13] A. Hoover, G. Jean-Baptiste, X. Jiang, P.J. Flynn, H. Bunke, D.B.
Goldgof, K. Bowyer, D.W. Eggert, A. Fitzgibbon, and R.B. Fisher,
“An Experimental Comparison of Range Image Segmentation
Algorithms,” IEEE Trans. Pattern Analysis and Machine Intelligence,
vol. 18, no. 7, pp. 673-689, July 1996.

[14] X. Jiang, C. Marti, C. Irniger, and H. Bunke, “Distance Measures
for Image Segmentation Evaluation,” EURASIP J. Applied Signal
Processing, vol. 2006, Article ID 35 909, 2006.

[15] G. Nagy, S. Seth, and M. Viswanathan, “A Prototype Document
Image Analysis System for Technical Journals,” Computer, vol. 25,
no. 7, pp. 10-22, July 1992.

SHAFAIT ET AL.: PERFORMANCE EVALUATION AND BENCHMARKING OF SIX-PAGE SEGMENTATION ALGORITHMS 953

[16] L. O’Gorman, “The Document Spectrum for Page Layout
Analysis,” IEEE Trans. Pattern Analysis and Machine Intelligence,
vol. 15, no. 11, pp. 1162-1173, Nov. 1993.

[17] K. Kise, A. Sato, and M. Iwata, “Segmentation of Page Images
Using the Area Voronoi Diagram,” Computer Vision and Image
Understanding, vol. 70, no. 3, pp. 370-382, June 1998.

[18] K.Y. Wong, R.G. Casey, and F.M. Wahl, “Document Analysis
System,” IBM J. Research and Development, vol. 26, no. 6, pp. 647-
656, 1982.

[19] H.S. Baird, “Background Structure in Document Images,” Docu-
ment Image Analysis, H. Bunke, P. Wang, and H.S. Baird, eds.,
pp. 17-34, World Scientific, 1994.

[20] T.M. Breuel, “Two Geometric Algorithms for Layout Analysis,”
Document Analysis Systems, pp. 188-199, Aug. 2002.

[21] I. Guyon, R.M. Haralick, J.J. Hull, and I.T. Phillips, “Data Sets for
OCR and Document Image Understanding Research,” Handbook of
Character Recognition and Document Image Analysis, H. Bunke and
P. Wang, eds., pp. 779-799, World Scientific, 1997.

[22] Y. Wang, R. Haralick, and I. Phillips, “Document Zone Content
Classification and Its Performance Evaluation,” Pattern Recogni-
tion, vol. 39, no. 1, pp. 57-73, Jan. 2006.

[23] T.M. Breuel, “High Performance Document Layout Analysis,”
Proc. Symp. Document Image Understanding Technology, Apr. 2003.

[24] S. Mandal, S. Chowdhury, A. Das, and B. Chanda, “A Simple and
Effective Table Detection System from Document Images,” Int’l J.
Document Analysis and Recognition, vol. 8, nos. 2-3, pp. 172-182,
June 2006.

[25] C. Shin and D. Doermann, “Classification of Document Page
Images,” Proc. Symp. Document Image Understanding Technology,
pp. 166-175, Apr. 1999.

[26] F. Shafait, D. Keysers, and T.M. Breuel, “Performance Comparison
of Six Algorithms for Page Segmentation,” Proc. Seventh IAPR
Workshop Document Analysis Systems, pp. 368-379, Feb. 2006.

[27] F. Shafait, D. Keysers, and T.M. Breuel, “Pixel-Accurate Repre-
sentation and Evaluation of Page Segmentation in Document
Images,” Proc. 18th Int’l Conf. Pattern Recognition, pp. 872-875,
Aug. 2006.

[28] D. Dori, D. Doermann, C. Shin, R. Haralick, I. Phillips, M.
Buchman, and D. Ross, “The Representation of Document
Structure: A Generic Object-Process Analysis,” Handbook of
Character Recognition and Document Image Analysis, H. Bunke and
P. Wang, eds., pp. 421-456, World Scientific, 1997.

[29] G. Ford and D. Thoma, “Ground Truth Data for Document Image
Analysis,” Proc. Symp. Document Image Understanding and Technol-
ogy, pp. 199-205, Apr. 2003.

[30] F. Shafait and T.M. Breuel, “Document Image Dewarping
Contest,” Proc. Second Int’l Workshop Camera-Based Document
Analysis and Recognition, pp. 181-188, Sept. 2007.

[31] T.M. Breuel, “Representations and Metrics for Off-Line Hand-
writing Segmentation,” Proc. Eighth Int’l Workshop Frontiers in
Handwriting Recognition, pp. 428-433, Aug. 2002.

[32] T.M. Breuel, “Robust Least Square Baseline Finding Using a
Branch and Bound Algorithm,” Proc. Document Recognition and
Retrieval VIII, 2002.

[33] L. Cinque, S. Levialdi, L. Lombardi, and S. Tanimoto, “Segmenta-
tion of Page Images Having Artifacts of Photocopying and
Scanning,” Pattern Recognition, vol. 35, pp. 1167-1177, 2002.

[34] F. Shafait, J. van Beusekom, D. Keysers, and T.M. Breuel, “Page
Frame Detection for Marginal Noise Removal from Scanned
Documents,” Proc. 15th Scandinavian Conf. Image Analysis, pp. 651-
660, June 2007.

[35] O. Okun, M. Pietikainen, and J. Sauvola, “Robust Skew Estimation
on Low-Resolution Document Images,” Proc. Fifth Int’l Conf.
Document Analysis and Recognition, pp. 621-624, Sept. 1999.

[36] D. Keysers, F. Shafait, and T.M. Breuel, “Document Image Zone
Classification—A Simple High-Performance Approach,” Proc.
Second Int’l Conf. Computer Vision Theory and Applications, pp. 44-
51, Mar. 2007.

[37] S. Marinai, E. Marino, and G. Soda, “Layout Based Document
Image Retrieval by Means of XY Tree Reduction,” Proc. Eighth Int’l
Conf. Document Analysis and Recognition, pp. 432-436, Aug. 2005.

[38] S. Mao and T. Kanungo, “Software Architecture of PSET: A Page
Segmentation Evaluation Toolkit,” Int’l J. Document Analysis and
Recognition, vol. 4, no. 3, pp. 205-217, 2002.

[39] L. Vincent, “Google Book Search: Document Understanding on a
Massive Scale,” Proc. Ninth Int’l Conf. Document Analysis and
Recognition, pp. 819-823, Sept. 2007.

Faisal Shafait received the bachelor’s degree in
electrical engineering from the University of
Engineering and Technology, Taxila, Pakistan,
and the master’s degree in information and
communication systems from the Hamburg
University of Technology, Germany. He is
currently working toward the PhD degree in the
Computer Science Department at the Technical
University of Kaiserslautern. He is also a
researcher in the Image Understanding and

Pattern Recognition Research Group, German Research Center for
Artificial Intelligence, Kaiserslautern, Germany. His research interests
include image processing and pattern recognition, focusing on docu-
ment image analysis.

Daniel Keysers received the Dipl. degree (with
honors) and the PhD degree (summa cum
laude) in computer science from RWTH Aachen
University, Germany, in 2000 and 2006, respec-
tively. During his PhD studies, he was with the
Department of Computer Science at RWTH and
headed the Image Processing and Understand-
ing Group, Human Language Technology and
Pattern Recognition Chair. He visited the In-
stituto Tecnológico de Informática, Unversidad

Politécnica de Valencia, Spain, in 2002 and Microsoft Live Labs in 2006.
From 2005 to 2007, he was a senior researcher at the German
Research Center for Artificial Intelligence (DFKI), Image Understanding
and Pattern Recognition Group (IUPR), Kaiserslautern, Germany. He is
currently working at Google Switzerland. His research interests include
pattern recognition and statistical modeling, especially for computer
vision, image object recognition, image retrieval, and document
processing.

Thomas M. Breuel received degrees from the
Massachusetts Institute of Technology and
Harvard University. Previously, he was a re-
searcher at Xerox PARC, IBM Almaden Re-
search Center, and IDIAP, Switzerland, as well
as a consultant to the US Bureau of the Census.
He is a professor of computer science in the
Computer Science Department at the Technical
University of Kaiserslautern, Germany, head of
the Image Understanding and Pattern Recogni-

tion (IUPR) Research Group at DFKI, and a consultant in Palo Alto,
California. His research group works on image understanding, document
imaging, computer vision, and pattern recognition.

. For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

954 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 30, NO. 6, JUNE 2008

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 36
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 36
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 36
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU (Use these settings with Distiller 7.0 or equivalent to create PDF documents suitable for IEEE Xplore. Created 29 November 2005. ****Preliminary version. NOT FOR GENERAL RELEASE***)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

