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Abstract The performance of most of the classification algorithms on a particular dataset
is highly dependent on the learning parameters used for training them. Different approaches
like grid search or genetic algorithms are frequently employed to find suitable parameter
values for a given dataset. Grid search has the advantage of finding more accurate solutions
in general at the cost of higher computation time. Genetic algorithms, on the other hand, are
able to find good solutions in less time, but the accuracy of these solutions is usually lower
than those of grid search.

This paper uses ideas from meta-learning and case-based reasoning to provide good start-
ing points to the genetic algorithm. The presented approach reaches the accuracy of grid
search at a significantly lower computational cost. We performed extensive experiments for
optimizing learning parameters of the Support Vector Machine (SVM) and the Random
Forest classifiers on over 100 datasets from UCI and StatLib repositories. For the SVM
classifier, grid search achieved an average accuracy of 81 % and took six hours for training,
whereas the standard genetic algorithm obtained 74 % accuracy in close to one hour of train-
ing. Our method was able to achieve an average accuracy of 81 % in only about 45 minutes.
Similar results were achieved for the Random Forest classifier. Besides a standard genetic
algorithm, we also compared the presented method with three state-of-the-art optimization
algorithms: Generating Set Search, Dividing Rectangles, and the Covariance Matrix Adap-
tation Evolution Strategy. Experimental results show that our method achieved the highest
average accuracy for both classifiers. Our approach can be particularly useful when training
classifiers on large datasets where grid search is not feasible.
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1 Introduction

In pattern recognition, classifiers are trained on labeled data to produce a function that maps
data points from the feature space to the label space. This function is used to predict the
label of a new data point. Typically, classifiers contain several parameters, which influence
their performance. A typical performance measure is the classification accuracy that is the
rate of correctly predicted labels. For one single dataset, the optimal parameter setting for
the classifier maximizes the performance on that dataset. The task of finding these optimal
parameter values is often called parameter tuning or parameter optimization and is a crucial
step for obtaining good results from most of the classifiers. Parameter tuning has several
aspects, which make it hard in general:

— Parameter settings that result in good performance values for one dataset may not lead to
good results for another dataset.

— The parameter values usually depend on each other. It is not sufficient to optimize multiple
parameters independently.

— The evaluation of one parameter setting can be already very time-consuming. Most of the
classifiers must be trained from scratch again.

— The search space can be huge due to several facts: (1) A classifier can have many param-
eters. (2) The range of the parameters may be large. (3) Real-valued parameters can be
sensitive to very small changes.

Many deterministic and probabilistic approaches with different complexities and worst
case guarantees have been used for parameter optimization of classifiers. A widely used
deterministic method for parameter optimization is grid search because it is simple and typi-
cally delivers good results. However, if the run-time of the optimization is important, it may
not be feasible anymore. A large number of classifier evaluations have to be performed using
this exhaustive method. Some authors have used more sophisticated deterministic optimiza-
tion algorithms such as the Dividing Rectangles (DIRECT) algorithm (Jones et al. 1993) or
Quasi-Newton methods (Ayat et al. 2002). However, grid search remains the most widely
used method as long as its computational demands can be met.

For high-dimensional optimization problems or training on large datasets, grid search
becomes computationally infeasible. In such scenarios, probabilistic optimization methods
such as genetic algorithms (Goldberg 1989) are usually preferred. For instance, architecture,
weights, and learning parameters of artificial neural networks were optimized using such
evolutionary approaches by Yao (1993). The Covariance Matrix Adaptation Evolution Strat-
egy (Hansen and Ostermeier 2001) is a modification of standard genetic algorithm that up-
dates the covariance matrix used for selecting the next generation. Friedrichs and Igel (2005)
used this method to optimize multiple parameters of Support Vector Machines (SVM).
Merelo et al. (2001) presented G-LVQ, which uses a genetic algorithm to optimize Learning
Vector Quantization (Kohonen 1998). Other probabilistic methods have also been used for
parameter optimization of classifiers. For example, to optimize parameters of an SVM, Pat-
tern Search (Kolda et al. 2003) was used by Momma and Bennett (2002) as well as by Eitrich
and Lang (2006), and a gradient descent-based approach was used by Chapelle et al. (2002).

The results achieved using genetic optimization depend on the choice of the start popula-
tion (see Sect. 2 for details). It is known that the performance of a genetic algorithm can be
increased if good starting points are used. It was also shown that manually selecting good
start points for the Nelder-Mead simplex optimization algorithm increases its performance
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(Shafait and Breuel 2011). In this paper, we present an approach that uses experience to find
good start points for the evolutionary parameter optimization of classifiers. The approach
uses concepts from meta-learning and adapts them to parameter optimization.

Meta-learning typically tries to predict the applicability of different classification algo-
rithms on a dataset, either by predicting only the best algorithm (Bensusan and Giraud-
Carrier 2000a; Ali and Smith 2006), predicting a ranking of multiple algorithms (Merz 1995;
Berrer et al. 2000; Brazdil et al. 2003), or predicting the performance of algorithms individ-
ually (Gama and Brazdil 1995; Sohn 1999; Kopf et al. 2000; Bensusan and Kalousis 2001).
More recently, discovering suitable data mining workflows have been investigated by us-
ing data mining ontologies (Hilario et al. 2011) and workflow templates (Kietz et al. 2010).
Meta-learning has been rarely used for parameter prediction. The only work in this direction
uses meta-learning to predict kernel parameters for Support Vector Machines (Soares et al.
2004; Soares and Brazdil 2006). A good survey on meta-learning is the paper by Smith-
Miles (2008).

The approach presented in this paper uses meta-learning to predict good parameter values
for a new dataset. However, instead of directly applying the predicted parameters, they serve
as a base for a following optimization step. The random initialization of the genetic algo-
rithm is replaced by using these predicted values as start points. Combining the predictions
of meta-learning with a genetic optimization reduces the risks of poor solutions compared
to applying both methods separately. If the meta-learning predicts poor parameter values,
the following optimization step is able to correct them. On the other hand, if the genetic
algorithm starts with an already promising solution, its risk of ending up far away from the
optimum will be reduced as well. This is an important aspect because genetic algorithms do
not provide any worst case guarantees as grid search does.

For the evaluation of the presented approach, we used two state-of-the-art classifiers:

Support Vector Machine (SVM): SVM (Cortes and Vapnik 1995) is a non-linear maximum
margin classifier using a kernel function. A typical kernel function is the radial basis func-
tion that contains the parameter y . The penalty parameter C of SVMs controls the trade-off
between minimizing the number of wrongly labeled training samples and maximizing the
margin. We considered optimization of these two parameters in this work. A more detailed
description of the SVM classifier including its parameters can be found in Burges (1998).
We choose the SVM classifier because it has been very successfully used for a wide range
of datasets from different domains. Additionally, the training time is rather high compared
to other classifiers. This makes it harder to optimize, because the evaluation of just one
parameter setting can be already very time-consuming.

Random Forest (RF): RF (Breiman 2001) is an ensemble classifier combining random se-
lection of features with bagging. Multiple decision trees are created using a random subset
of the attributes. For classification, all trees are applied and make a prediction. The final
class is determined by a voting scheme among them. RF is also a widely used classifier
and contains several parameters. In this work, we optimized five parameters: number of
trees, number of randomly chosen attributes, minimum number of instances for a split,
minimum split ratio, and the number of categories for random category split search. The
minimum split ratio defines how balanced a split must be in order to be accepted. The last
parameter determines the maximal number of possible splits of an attribute for performing
an exhaustive split search instead of a random split search.

The rest of this paper is structured as follows: first, we give a brief introduction to genetic
algorithms in Sect. 2 and highlight their problems using SVM parameter optimization as an
example. Section 3 describes the methodology of the new approach and Sect. 4 contains an
extensive evaluation of it. The conclusion and future work make up the last section.
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2 Genetic algorithms for parameter optimization

Genetic algorithms are a common search strategy and optimization method that are inspired
by biological evolution. A population of individuals evolves over multiple generations. The
individuals with higher fitness values survive and new individuals are generated by crossing-
over and/or mutating existing individuals in the population. This leads to an increase in the
average fitness of the population over multiple generations.

In optimization, each individual of the population is a candidate solution of the problem.
The fitness of the individual is the quality of this solution. The goal is to find a solution with
the highest fitness value. The algorithm works in principle as follows:

— Creation of a random start population of r individuals.

— Evaluation of the fitness of all individuals in the population.

— Random selection of individuals for next generation according to their fitness. Some
individuals may be doubled whereas individuals with a poor solution will be discarded.

— Probabilistic mutation of single individuals.

— Probabilistic cross-over by recombining two individuals to create two new individuals.

— Stop if the stop criterion is fulfilled. Otherwise, continue with step 2.

As stopping criterion, different rules can be used. For instance, the search can be stopped if
a maximum number of generations were reached or if no better solution was found during a
defined number of consecutive generations. The output of the algorithm is usually the best
solution found during the search.

For parameter optimization of a classifier, a solution is one specific setting of all parame-
ters of the classifier that should be optimized. The fitness of the individual is the performance
achieved by the classifier using these parameter values. This means, whenever a solution has
to be evaluated, the concerned classifier has to be trained again. For most classifiers, this is
the most time-consuming part in contrast to the actual classification. If cross-validation is
used, even multiple trainings of the classifier are needed for determining the quality of one
parameter setting.

Because genetic algorithms select solutions with higher quality, the search is guided to
regions of the search space with more promising solutions. Although the search is not guided
directly to a local optimum and may not find any better solution over generations, it con-
verges to a local optimum in sufficient time with a high probability.

A problem occurs when big parts of the search space consist only of solutions with the
same fitness value. In this case, it is likely that all individuals of a random start population
have equal fitness values. This is problematic for selecting individuals for the next generation
probabilistically according to their fitness values. If all solutions have the same fitness value,
they also have the same selection probability. The search cannot be guided to regions with
better solutions and randomly moves within the region with equal quality solutions instead.
This increases the number of generations needed to find the best solution significantly.

In the worst case, it can miss out the optimum completely and end up far away from
it. One reason for that is a stopping criterion that is often used: the search is stopped if
several consecutive generations do not lead to any improvement. This scenario is illustrated
in Fig. 1 using the datasets heart-statlog and dermatology from the UCI machine learning
repository (Asuncion and Newman 2007). The plot shows the SVM accuracy values for
different combinations of the parameters y and C. In Fig. 1(a), the three individuals have
different selection probabilities due to their different fitness values. The better individuals
will be selected more probably and the search will be continued in these more promising
regions.
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Fig. 1 On target functions with heart-statlog
start population XX
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(a) For the heart-statlog dataset, the selection
step will select the better solutions with higher
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(b) On the dermatology dataset, all individ-
uals have the same quality and therefore the
same selection probability as well.

In contrast to this, Fig. 1(b) shows the common case where most of the candidate solu-
tions deliver the same performance. This value is often the default accuracy (like by guessing
or picking the most frequent class) that many parameter settings achieve. In addition, there
are only a fixed number of possible accuracy values, especially for a small amount of test
data. Different decision boundaries have the same classification accuracy. This leads to in-
dividuals with equal selection probabilities and the genetic algorithm is not able to select
individuals that are closer to the optimum with higher probability. These issues are wors-
ened due to the time constraint: the number of required parameter evaluations should be
as small as possible. This can be obtained by using a rather small population and a rig-
orous stopping criterion, but both actions intensify the previously described issues. Small
populations increase the probability of all individuals having the same selection probability.
A more rigorous stopping criterion increases the chance of the search being stopped in flat
regions of the target function as well.

If the difference of the fitness values of individuals in the flat regions is very small but
not zero, the choice of the selection scheme might be important. In contrast to the common
Roulette Wheel selection where the selection probability of an individual directly correlates
with its fitness, the selection probability using rank selection is only based on the rank of the
individual. For solutions with small differences in their fitness, the better solution is selected
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more probably compared to Roulette Wheel selection. Therefore, genetic algorithms using
rank-selection might be able to overcome the problem of flat regions. The choice of the
selection scheme is investigated later in the evaluation section.

3 Methodology

For solving the mentioned limitations we propose to use specific start points for the genetic
optimization of parameter values. The typically random initial population will be replaced
by defined start points. These points should be already reasonably close to the optimal pa-
rameter values. This has two advantages: (1) The time needed for finding the best solution
is reduced. (2) The risk of ending up far away from the optimal value is decreased. The pre-
sented approach utilizes experience about optimal parameter values of several datasets. Ad-
ditionally, a similarity measure of datasets is used to apply this knowledge to new datasets.
The start population of the genetic optimization with a population of size r is defined as the
optimal parameter values of the » most similar datasets.

3.1 Meta-features

The similarity measure of datasets uses features that describe a dataset. Such features are of-
ten called meta-features. Different features and feature types were proposed in the literature.
We selected a subset of them, which were computable on all datasets we used in our eval-
uation. The following 15 meta-features, that can be grouped according to their theoretical
foundation, were used:

1. Simple meta-features (Engels and Theusinger 1998):

— Number of samples

— Number of attributes

— Number of numerical attributes
— Number of categorical attributes

2. Statistical meta-features (Gama and Brazdil 1995; Vilalta et al. 2004; Brazdil et al. 1994,
King et al. 1995):

— cancorl: canonical correlation for the best single combination of features

— cancor2: canonical correlation for the best single combination of features orthogonal
to cancorl

— fractl: first normalized eigenvalues of canonical discriminant matrix

— fract2: second normalized eigenvalues of canonical discriminant matrix

— skewness: mean asymmetry of the probability distributions of the features (non-
normality)

— kurtosis: mean peakedness of the probability distributions of the features

3. Landmarking meta-features (Pfahringer et al. 2000; Bensusan and Giraud-Carrier
2000b):

Best stump node landmark

— Average stump node landmark
Worst stump node landmark
Naive Bayes landmark

The fract features measure the collinearity of the class means. The landmarking approach
utilizes simple, fast computable classifiers and uses the achieved classification accuracy as
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a feature of the dataset. The stump node landmarkers create single decision nodes for each
attribute and the nodes with the best, the average, and the worst accuracy are used as land-
markers.

Soares and Brazdil (2006) used meta-features specifically designed for SVMs to pre-
dict its parameters. Since our approach is not limited to a specific classifier, more general
features are used in this paper. However, the underlying assumption that similar datasets re-
quire similar parameter values of the classifier is the same. Therefore, the features construct
the base for a feature selection step, which also uses knowledge based on experience. The
knowledge and its structure is described in the following section. The feature selection step
will be explained in Sect. 3.3.

3.2 Knowledge base

The knowledge base K is the gathered experience of previous optimizations of the classifier

on n unique datasets. It consists of their meta-features m, ..., m, and the optimal parameter
values of the classifier found for each dataset 91, e Qn:
K ={(m1,6), ..., (m,,6,). 1)

Additionally, since the presented algorithm calculates the meta-features m; of a dataset
and returns its optimized parameter values é,-, this information can be added to the knowl-
edge base Koy = K U {(m;, é,-)}. This increases the amount of experience and should im-
prove further runs. A bootstrapping approach to create experience without any initial knowl-
edge K = is also conceivable. The very first evaluations are done with random start popu-
lations. If some experience was gathered, this can already be used for defining a start popu-
lation. The first evaluations may be repeated using the newly gathered knowledge to increase
the achieved accuracy and to improve the start points for other datasets. For practical usage
it is also possible to use a common knowledge base.

3.3 Meta-feature selection

To find the most promising start points for the genetic algorithm, we want to find r datasets
within the knowledge base that are most similar to the new dataset. This step is motivated by
case-based reasoning (CBR) research, which can be explained in one simple sentence (also
known as the CBR assumption): Similar problems have similar solutions. Hence, we use a
simple nearest neighbor approach to find r nearest datasets based on meta-features. How-
ever, the number of meta-features is relatively large considering that the number of samples
(each dataset is one sample in this scenario) is very small. This problem is aggravated by the
fact that the nearest neighbor algorithm is sensitive to irrelevant attributes.

One way to solve this problem is to manually select a priori a small subset of meta-
features that provides information about properties that affect algorithm performance as
done in Brazdil et al. (2003). However, it has been shown in meta-learning literature that
the set of meta-features that is suitable for predicting performance of one learning algorithm
may not be suitable for another learning algorithm (Kalousis and Hilario 2001). Therefore,
an automatic meta-feature selection step is desired to avoid manual investigation of the
meta-features for new target classifiers and knowledge bases.

For automatic feature selection, we use a brute-force search with a wrapper approach
where each possible feature combination is tested. In a standard wrapper approach, the
actual target function is evaluated for each considered feature set. In our case, where the
target function is the achieved accuracy of the classifier, evaluating the target function would
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require to run the complete genetic optimization. This means training the classifier for each
candidate parameter combination. Furthermore, since the genetic algorithm is a random-
based method, multiple runs should be performed to get reliable results. This leads to a huge
computational effort for the evaluation of a meta-feature set. Therefore, we modified the
traditional wrapper approach to only estimate the actual performance of a meta-feature set
using the knowledge base.

The knowledge base consists of both the meta-features and the optimal parameter values
of the target classifier for each dataset. Hence, we can obtain two types of distances from the
knowledge base: distances in the feature space (i.e. distances between meta-features of the
datasets), and distances in the parameter space (i.e. distances between optimized parameter
values on the datasets). For performing feature selection, we use the distance in the parame-
ter space as the target function. We choose a subset of meta-features that minimizes distances
in the parameter space. The reason for this is the assumption that the genetic algorithm will
perform better if its start population is closer to the optimum.

More specifically, consider the set H contains all feature selection functions to select
every possible subset of meta-features, i(m) is the set of meta-features selected by a par-
ticular function h. For each dataset x of all datasets X in our knowledge base, let éx be
the optimal parameter values for x. We find the k-nearest-neighbors N, in the feature space
of the selected meta-features 4 (m) and compute the corresponding distances in parameter
space. The sum of these distances for all datasets is used as the target function for feature

selection.
dy=2_ 16 =0l (€)

xeX ieNy

The feature selection function / that minimizes the distance d;, is chosen as the best candi-
date. The feature selection approach is also shown as pseudo code in Algorithm 1.

Algorithm 1 Meta-Feature Selection

1: function META_FEATURE_SELECTION(X, H, k)
for all feature selection functions 7 € H do
dp <0
for all datasets x € X do
N < k-nearest datasets of x in the space of the meta-features selected by i
dp < sum of distances between optimal parameter values of x and N
dp <—dp+dy
return % that minimizes dj,

R RN E RN

Note that, using 15 meta-features leads to |H| = 32, 767 subsets in our brute force ap-
proach. Since only distances are calculated for a subset evaluation, the computational effort
is not very large. In our experiments using 102 datasets and a single-threaded JAVA pro-
gram, the average run-time of the feature selection method was only about 46 seconds on
a 2.3 GHz AMD Opteron running Linux. Since the new dataset is not involved in the fea-
ture selection algorithm, the meta-feature selection can be performed off-line, independently
from the actual optimization step.

The actual determination of the start population for a new dataset y that is not in the
knowledge base uses the determined feature selection function /. It gets the r nearest
datasets according to the selected meta-features and uses the optimal parameter settings
of these datasets as start points.
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Fig. 2 Not all three selected 1000 r T T T T
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(a) The knowledge base, three selected
start points and the result of a grid
search for the heart-statlog dataset.
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(b) One of the selected start points is already
close to the result of the grid search and will
therefore deliver a good performance value.

3.4 Examples

As examples for the application of the method, we use the SVM classifier and the same
datasets from Fig. 1. Figure 2 illustrates the advantages of the approach for the heart-statlog
dataset. The optimal parameter settings of the remaining datasets serve as knowledge base
and are drawn as dots in Fig. 2(a). The parameter values of the datasets that are most similar
to the heart-statlog dataset are surrounded by an additional circle. They will be used as
start population for the optimization. The desired optimal parameter setting of the heart-
statlog dataset is marked as a cross. One can see that not all selected datasets deliver very
close parameter values, but just one start point near the actual optimum can decrease the
optimization time. In Fig. 2(b), the classification accuracy over the parameter space is plotted
for the same dataset. The selected start population is shown as circles and the result of a grid
search as cross again. Since one selected start point delivers already a good performance
value, the result will be quite good even if the search does not find any better solution. The
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Fig. 3 If the optimization of the 1000 r T T owiedae b
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(a) The knowledge base, three selected
start points and the result of a grid
search for the dermatology dataset.
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(b) The complete start population has good
accuracy values.

second example uses the dermatology dataset and is shown in Fig. 3. Again, not the actual
closest start points were selected as shown in Fig. 3(a), but in Fig. 3(b) it is visible that all
three points have good performance values, close to the grid search result. The search will
not get stuck within the flat, black region of poor solutions.

4 Evaluation

For the evaluation of the presented approach, we used 102 classification datasets from the
UCI machine learning repository (Asuncion and Newman 2007) and from StatLib (Vlachos
1998), but artificially created datasets might be used as well (Frasch et al. 2011). The used
datasets from different domains contain from 10 to 2310 samples with 1 to 261 nominal
and numerical attributes. A list of the datasets can be found in Table 3 in the Appendix. Since
the training of the Random Forest classifier on the “cylinder-bands” dataset takes extremely
long, we omitted this dataset for evaluations regarding the Random Forest classifier.
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After the calculation of the meta-features, all datasets were preprocessed to meet the
requirements of both classifiers. Missing values were replaced by the average value, nominal
features were converted to numerical features, and finally, all features were normalized to the
range [—1; 1]. The optimal parameter settings for every dataset were determined by a grid
search and used to construct the knowledge bases for the evaluation. Regarding the SVM
classifier, the search interval for ¥ was [0.0001; 10] with 85 logarithmic steps and [0; 1000]
with 100 logarithmic steps for C. Due to the computational complexity, the number of steps
for the parameters of the Random Forest classifier were smaller. We used five steps for the
number of trees and six steps for the remaining four parameters. This leads to 6480 classifier
evaluations during the grid search, which is already a huge computational effort.

The experiments were performed by utilizing only open source libraries. LibSVM
(Chang and Lin 2001) served as SVM implementation and PARF (Skala 2004) as imple-
mentation for the Random Forest classifier. GAlib (Wall 1996) was used for the genetic
algorithm. We modified this genetic algorithm implementation to use a defined start popula-
tion. The mutation operation was a Gaussian mutation with a step size of 1.0. Its probability
was selected by applying the rule of Bick (1993): p,, = % where j is the number of vari-
ables of an individual. This leads to p,, = 0.5 for SVM and p,, = 0.2 for Random Forest.
Additionally, uniform cross-over was performed with a probability of p., =0.9.

We compared the presented approach with five different optimization approaches:

grid search: For the SVM classifier, we applied a typical 15 x 15 grid used by Hsu and
Lin (2002): y =[2719,279, ..., 24 and C =[272,27',...,2!?]. For the Random Forest
classifier, the same grid with 6480 parameter combinations for creating the knowledge
base is used.

std. GA: The standard genetic algorithm uses a random start population. It also utilizes
GAlib as implementation.

CMA: For the Covariance Matrix Adaptation Evolution Strategy (Hansen and Ostermeier
2001) we used the implementation of the BEAGLE framework (Gagné and Parizeau 2006).

DIRECT: We used the NLopt (Johnson 2009) framework as implementation for the Divid-
ing Rectangles algorithm (Jones et al. 1993).

GSS: Generating Set Search (Kolda et al. 2003) is a type of pattern search that can also
handle linear constraints. HOPSPACK (Plantenga 2009) was the used implementation.

We applied all optimization methods on each of the 102 datasets using a leave-one-out
cross-validation. The optimization intervals for the parameters of the SVM and Random
Forest were the same as used for creating the knowledge base. Every classifier evaluation
used a ten-fold cross-validation. Since the optimization runs contain random factors, 30
independent runs of each algorithm were performed on every dataset. The mean accuracy of
an optimization method is the average over these 30 runs and all datasets.

All optimization methods were stopped after s generations/iterations without improve-
ment. Since this parameter has a strong influence on performance and the run-time of the
algorithm, its choice is important. The influence of this parameter is discussed in more detail
in Sect. 4.2.

The population-based methods contain the population size r as an additional parameter.
Since the main goal of the presented approach is obtaining good solutions in a short time,
small populations and rigorous stopping criteria are primarily considered. Thereby, we as-
sure that the run-time of the genetic optimization is shorter than a grid search, even though
the standard GA typically requires a bigger population. The presented approach additionally
contains the parameter k within its meta-feature selection step (see Sect. 3.3).

An additional parameter for genetic algorithms is the used selection scheme. As already
mentioned, a typical selection scheme is Roulette Wheel selection but rank selection may
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(b) Box plot over the datasets using a stop-
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work better for parameter optimization. Therefore, we investigated both selection schemes
first. Figure 4(a) shows the average accuracy of the SVM classifier achieved by the stan-
dard GA and the presented approach using different stopping values and a population size
of 7. Figure 4(b) shows a box plot of the two approaches for a stopping criterion of s = 2.
It is visible that the rank-based selection scheme achieves better results for both methods.
Therefore, we decided to use this selection scheme for further evaluations of the genetic
algorithms. It is also visible that the improvement by using rank selection is higher for the
standard GA.

4.1 Results and discussion
For the two datasets from the examples of Sect. 3.4, Fig. 5 shows the achieved accuracy

values during the search for the optimal parameter values of the SVM by the standard GA
and the presented approach. The values are the mean and the standard error over 30 runs.
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(a) heart-statlog dataset: the presented ap-
proach already starts with very good solutions
and has very low variances. The standard GA
needs much more time for finding good solu-
tions and has high standard error.
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(b) dermatology dataset: the presented ap-
proach starts with very good solutions again.
The risk of getting a bad solution is rather
high for the standard approach.

For this illustration, we used a different stopping criterion. The search was stopped after a
fixed number of generations and it uses a population size of 5. In both graphs, one can see
that the presented approach already starts with good performance values and converges to
the accuracy of the grid search in few generations. For the heart-statlog dataset in Fig. 5(a),
the standard genetic algorithm also delivers good results, but needs a much higher number
of generations. On the contrary, the results of the algorithm with random start points for
the dermatology dataset in Fig. 5(b) stay below the optimum even after a large number of
generations. Additionally, the standard error of the achieved accuracy values over 30 runs is
very low using the presented method. This indicates a very low risk of ending up with a bad
solution. In contrast to this, the risk of the standard GA is higher as especially noticeable in
Fig. 5(b).
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(b) Results for the datasets from g to z.

Fig. 6 The increase in classification accuracy of an SVM for each single dataset of the proposed method
compared to the standard GA (average of 30 runs including the standard deviation) with the parameters
k=1,r=5ands=2

Figure 6 shows the increase of accuracy for every dataset after the random start popu-
lation was replaced by a defined population. The standard deviation of this increase is also
visible. The plot uses the parameter values r =5, k = 1, and s = 2. Although the increase in
accuracy is not very large for every dataset, the presented method is able to improve results
for almost every dataset.

Table 1 shows the average accuracy values of the presented approach and the two
population-based methods for different population sizes and stopping criteria. The two other
methods, DIRECT and GSS, are omitted in this table since they are not population-based
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Table 1 Average classification accuracy of the grid search, the standard genetic algorithm, the CMA algo-
rithm and the proposed method for different parameter combinations. All values are in [%]

Parameter SVM accuracy Random forest accuracy
r s Grid Std. CMA This Grid Std. CMA This
search GA paper search GA paper

3 2 81.1 70.4 69.0 79.5 80.7 68.4 68.2 71.8
5 2 81.1 72.9 69.3 80.3 80.7 71.8 68.7 78.7
5 6 81.1 74.2 70.4 80.9 80.7 73.0 69.7 79.2
7 2 81.1 74.4 69.9 81.0 80.7 73.7 69.0 79.2
7 6 81.1 75.5 70.8 81.2 80.7 74.7 69.7 79.7
7 10 81.1 76.4 71.0 81.8 80.7 74.9 70.1 80.0

and a comparison considering population sizes is not easily possible. The accuracy achieved
by the grid search is also shown. It is visible that the presented method achieves higher ac-
curacy values than the standard GA and CMA for both classification algorithms. For r =7
and s = 10, the presented method achieves an even higher accuracy than grid search for the
SVM classifier.

To decide whether these differences in accuracy are statistically significant or not, we
applied statistical tests over the 102 datasets and compared the presented approach with
each competing method. To do this, the paired 7-test might be used. However, this paramet-
ric test assumes that the accuracy differences are normally distributed. Furthermore, outliers
in the tested population decreases the power of the 7-test (DemsSar 2006). Since the results
particularly contain outliers, we used the non-parametric Wilcoxon test instead. For all con-
sidered parameter combinations and a confidence level of 95 %, the differences between
the proposed method and the grid search are not statistically significant whereas the dif-
ferences between the proposed method and the std. GA as well as the CMA are indeed
significant.

In addition to the accuracy, we compared the run-time of the different approaches. Fig-
ure 7 shows the accuracy depending on the number of evaluations for two different pop-
ulation sizes. The presented approach achieves higher accuracies for both classifiers for a
different number of classifier evaluations. The standard GA and the CMA method are unable
to achieve the same accuracy even for higher number of evaluations. Surprisingly, the CMA
algorithm is worse than the standard GA for approximately the same number of evaluations.

Summarizing, the presented method is able to reach performance values of a grid search,
but only needs the time of a genetic algorithm. For example, using an AMD Opteron with
2.3 GHz, the presented approach needs only about 45 minutes for optimizing the SVM
parameters of all datasets using the parameter values r = 7 and s = 2. The grid search needs
about six hours that is consequently more than seven times longer. However, the difference
of the achieved average accuracy values of 81.0 % by the presented method and 81.1 % by
the grid search is statistically not significant.

Since the two optimization methods DIRECT and GSS do not use any population, the
classifier is evaluated only once during an iteration of the search. Therefore, a large number
of iterations without improvement were allowed to assure a fairer comparison. However, as
visible in Fig. 8, both methods do not reach the accuracy values of the presented approach
for a comparable number of classifier evaluations. Although the GSS algorithm delivers
good results for the SVM classifier, the achieved accuracy values are lower than the std. GA
for the Random Forest classifier.

@ Springer



372 Mach Learn (2012) 87:357-380

Fig. 7 The average accuracy 0.85 F i i s " ah s T CM!A s ]
(including the 95 % confidence 1 this paper, (=7 —=mmv e N p— GMA, 17
interval) achieved by the
presented approach and the
competing population-based 0.8 |- -
methods depending on the B
number of classifier evaluations g
g
o 075 -
j=}
©
o
s
0.7 - -
065 | | | | | |
0 20 40 60 80 100 120
number of evaluations
(a) SVM
T T T T
0.85 [~ this paper, r=5 std. GA, r=5 CMA, r=5 b
this paper, r=7 ===== std. GA, r=7 ===== CMA, r=7
08 - ——cmmmmmm— = = e
) e
©
=1
3
©
Clé) R e —
>
©
07 - T I I -
I—I
065 1 1 1 1 1 1
0 20 40 60 80 100 120

number of evaluations

(b) Random Forest

For the Wilcoxon tests of the accuracy differences over the datasets, we used those of the
considered parameter combinations of the algorithms on which they achieved their highest
average accuracy. With a confidence level of 95 %, the differences between the presented
method and GSS as well as DIRECT are statistically significant. Only the difference for
SVM with GSS is statistically not significant.

Furthermore, we investigated how much accuracy could be achieved purely by meta-
learning without any evolutionary optimization. For that purpose, we evaluated the perfor-
mance of the parameter predictions directly. Predicted parameter settings are the optimal
parameter values of the » most similar datasets. The performance of the predictions is the
highest accuracy achieved with one of those unmodified settings. Table 2 shows the per-
formance of the predictions for the SVM classifier. Besides, the predicted parameter values
were used as start points for the genetic algorithm to quantify the improvement in accuracy
due to the optimization step. The results show that the following evolutionary optimiza-
tion is able to improve the performance values. The last column shows the percentage of
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Table 2 Accuracy values of meta-learning and the genetic algorithm with defined start points for SVM.
The last column shows the percentage of the datasets, for which accuracy was increased significantly. The
parameter r denotes the number of predicted parameter settings by meta-learning and population size in the
genetic algorithm. The genetic algorithm was stopped after six generations without improvement (s = 6). All
values are in [%]

r Accuracy of metalearning Accuracy of presented Significantly
prediction approach improved

1 74.5 78.1 733

3 77.9 80.3 65.3

5 78.6 80.9 68.3

the datasets, for which accuracy was increased significantly. A Wilcoxon test with a con-
fidence interval of 95 % was used. Whereas the prediction of meta-learning delivers al-
ready good results, the accuracy could be increased significantly for more than 65 % of the
datasets.
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4.2 Effect of changes in parameter values

Previously, only exemplary values of the parameters k, r, and s have been investigated,
although the choice of the parameters can have a strong influence on the results of an
optimization method. Bartz-Beielstein et al. (2005) presented an approach for optimizing
the parameters of search heuristics which can also be used to optimize different parame-
ters of genetic algorithms. However, instead of such an additional optimization, we did an
extensive manual analysis of the parameters of the presented method for the SVM classi-
fier.

The parameter k is the number of neighbors, whose distance is minimized during the
meta-feature selection step. Since only one good prediction is sufficient for improving the
genetic algorithm, a value of one seems to be a good choice, independently from the other
parameters. Therefore, we omitted the genetic algorithm and computed only the accuracy
values achieved by the potential start points. Our experiments showed that for small values
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of k, the results differ not much and k = 1 seems to be a good choice in general. So we stick
to this value for the evaluation of the two other parameters.

The population size r is an important parameter of genetic algorithms. Smaller popu-
lation sizes reduce the computation time, but may miss good results as well. The average
accuracy values achieved by the SVM with different population sizes are plotted in Fig. 9(a)
for both approaches. Although very small population sizes are uncommon for genetic al-
gorithms, the presented approach already reaches good performance results using these set-
tings. The performance of the standard approach stays below the presented method for each
considered population size.

Figure 9(b) shows the average number of generations for both methods. It is visible that
an increase in the population size does not lead to fewer generations in general. However,
the average number of generations for the presented method were lower than those for the
standard genetic algorithm.

For the parameter s of the stopping criterion, Fig. 10 shows the average accuracy and
number of generations. A more rigorous stopping did not lead to much worse results of the
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presented method (Fig. 10(a)), but can shorten the search time dramatically (Fig. 10(b)).
Again, parameter values that will lead to a shorter run-time (like small values of s) increase
the benefit of the presented approach.

5 Conclusion

In this paper, a new approach of using meta-learning in genetic algorithms for parameter
optimization of classifiers was presented. Knowledge based on previous evaluations on sim-
ilar datasets was used to define a better initial population instead of random individuals. The
similarity between datasets was computed as a function of distance between their automati-
cally selected meta-features.

Our approach was used for optimizing two parameters of Support Vector Machines
(SVM) and five parameters of the Random Forest classifier on over 100 datasets from the
UCI and StatLib repositories. The results showed that the presented approach is able to
significantly increase the average classification accuracy of both classifiers compared to a
standard genetic algorithm. The achieved accuracy values of the SVM were close to those
achieved by a typical 15 x 15 grid search for SVMs at one-seventh of the computational cost.
Moreover, the presented approach was compared to three other state-of-the-art optimization
algorithms. The results show that it achieves the best average accuracy for both classifiers.
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Appendix: Increase of accuracy

Table 3 The increase of accuracy of the presented method compared to the standard GA for each dataset
and different parameter combinations (averaged over 30 runs)

Dataset SVM Random forest
r=>5 r=17 r=>5 r="17
s=2 s=6 s=2 s=6 s=2 s=6 s=2 s=6

Analcatdata-aids -1.8 -1.0 —0.6 -1.0 8.5 8.0 7.0 9.1
Analcatdata-asbestos -2.9 —-1.8 24 2.2 1.9 2.8 33 2.4
Analcatdata-authorship 10.4 12.5 10.4 4.2 0.9 0.8 0.8 0.9
Analcatdata-bankruptcy 3.9 4.1 4.5 43 21.1 20.5 15.9 8.9
Analcatdata-bondrate 2.1 24 24 1.6 1.0 0.8 0.9 1.0
Analcatdata-boxing1 10.3 8.7 9.6 8.3 9.5 9.2 7.6 5.8
Analcatdata-boxing2 17.5 17.7 11.9 10.3 12.0 6.9 11.2 2.8
Analcatdata-braziltourism 0.7 0.9 1.0 0.8 0.2 —0.1 0.0 0.3
Analcatdata-broadway 12.6 17.0 11.5 9.1 8.1 45 8.4 4.7
Analcatdata-broadwaymult 10.1 8.6 9.0 6.6 —-1.4 —1.0 —1.4 —0.1
Analcatdata-chall101 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Analcatdata-chall2 6.2 6.2 7.1 3.0 44 1.3 4.1 3.7
Analcatdata-challenger 5.1 3.0 1.7 04 7.8 7.0 6.8 7.2
Analcatdata-creditscore 3.7 3.5 0.2 0.1 4.9 6.1 1.6 1.8
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Table 3 (Continued)

Dataset SVM Random forest

r r r=>5 r

s = s=06 s = s=6 s=2 s=06 s = s=06
Analcatdata-currency —0.2 1.7 —0.6 —0.5 1.9 1.7 1.7 2.8
Analcatdata-cyyoung8092 4.7 33 4.9 54 2.8 34 4.0 33
Analcatdata-cyyoung9302 6.3 7.2 6.8 5.8 4.0 35 3.0 3.0
Analcatdata-dmft 2.4 22 2.0 2.4 1.0 0.2 0.3 0.1
Analcatdata-donner 6.7 6.8 17.0 13.0 12.2 10.3 9.1 10.0
Analcatdata-esr 0.9 1.1 0.9 1.7 1.0 1.1 1.9 2.6
Analcatdata-famufsu 36.4 343 41.4 33.1 47.2 47.3 38.7 41.5
Analcatdata-fraud 22 2.1 33 25 49 3.8 5.1 35
Analcatdata-germangss 0.0 —-0.5 -0.8 0.2 2.0 1.2 1.5 0.8
Analcatdata-happiness —10.1 —-9.1 —1.4 —1.4 12.8 13.9 13.4 12.2
Analcatdata-hurricanes 1.2 0.8 0.8 0.8 —-1.3 —1.8 0.2 0.2
Analcatdata-japansolvent 0.3 0.8 1.7 1.2 17.3 14.9 7.1 10.7
Analcatdata-lawsuit 0.8 0.7 1.1 0.8 0.8 1.1 0.8 1.2
Analcatdata-mapleleafs 0.3 0.9 0.3 0.4 0.1 0.1 —0.1 0.0
Analcatdata-votesurvey —4.6 —1.4 3.8 =3.1 8.6 10.0 10.3 4.1
Anneal 0.8 14 1.3 1.3 2.1 2.3 6.1 4.0
Arrhythmia 14.0 11.8 10.3 9.3 44 3.1 35 2.0
Audiology 19.6 19.7 28.2 24.3 19.7 17.4 159 15.6
Backache 0.5 0.7 0.6 0.9 0.5 0.7 0.4 0.9
Balance-scale 34 14 2.5 2.1 2.6 1.5 1.6 0.8
Biomed —0.1 —0.1 -0.3 —0.2 22 1.6 1.9 1.4
Breast-cancer 44 3.7 4.1 3.6 —1.1 —-1.3 -0.3 —1.5
Breast-w 04 0.3 0.4 0.3 0.4 0.2 0.3 0.3
Car 15.7 18.0 10.9 7.1 9.6 6.8 6.0 45
Cars 0.4 0.2 1.6 23 6.5 8.1 6.6 5.8
Cloud —0.1 0.4 —-04 0.3 9.7 9.5 8.0 6.6
Cmc 2.8 24 2.3 14 0.1 -1.0 -0.7 —-0.2
Colic 9.1 52 4.7 53 0.7 0.3 0.4 0.3
Collins 0.0 0.0 0.2 0.0 5.6 4.6 4.1 43
Confidence 0.7 0.9 0.8 1.1 389 37.9 23.1 25.7
Credit-a 1.3 0.3 0.4 0.5 0.5 0.7 0.4 0.3
Credit-g 4.7 4.0 4.2 39 2.0 1.2 1.1 1.1
Cylinder-bands 14.5 15.1 12.6 11.1 - - - -
Dermatology 49.7 63.2 49.7 56.5 6.1 3.7 2.9 2.0
Diabetes 3.0 1.9 1.7 14 0.6 0.1 0.2 —0.1
Ecoli 22 1.4 1.7 1.2 1.8 22 44 3.0
FI12000 1.9 13 1.3 1.3 73 10.0 59 5.5
Glass 1.7 1.5 0.5 0.9 7.5 8.5 6.9 72
Haberman —-0.2 0.2 0.1 —0.1 0.2 0.4 0.2 0.1
Hayes-roth-test 8.1 8.8 6.0 7.3 23.8 15.4 15.1 19.2
Hayes-roth-train 1.2 1.0 1.2 1.2 7.7 5.1 6.0 7.3
Heart-c 3.1 1.0 2.2 0.2 0.4 —0.1 0.2 0.2
Heart-h 8.1 6.0 7.1 6.1 0.0 0.2 0.0 0.6
Heart-statlog 2.3 0.5 0.6 0.2 0.5 0.8 0.5 0.3
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Table 3 (Continued)

Dataset SVM Random forest

r r= r=>5 r

s = s=6 s = s=6 s=2 s=6 s = s=06
Hepatitis 5.0 49 49 4.8 1.9 1.1 2.5 2.3
Ionosphere 1.2 0.2 0.7 0.2 33 1.4 1.6 1.3
Iris 1.4 1.2 1.3 1.4 5.8 5.8 5.0 0.1
Irish 0.4 0.3 0.3 0.2 1.9 0.1 0.4 0.0
Labor 8.4 1.2 7.4 1.7 7.9 9.9 13.7 5.3
Liver-disorders 3.6 3.5 2.7 2.6 0.7 0.6 1.7 1.1
Lung-cancer 13.5 11.9 11.9 14.6 12.8 13.3 13.6 11.9
Lupus 34 2.5 1.8 1.3 1.1 32 1.1 0.5
Lymph 12.7 4.8 9.1 2.7 4.1 35 44 4.8
Molecular-biology-promoters 35.8 39.9 329 27.5 4.5 6.4 2.3 2.5
Monks-problems-1-test 30.0 21.7 13.3 18.3 23.0 14.3 13.8 10.2
Monks-problems-1-train 37.7 30.4 30.6 23.3 20.1 16.9 14.9 16.8
Monks-problems-2-test 31.8 24.0 26.2 222 20.2 17.9 20.3 18.0
Monks-problems-2-train 5.7 4.5 9.7 10.6 3.8 4.6 4.4 5.7
Monks-problems-3-test 18.2 23.6 12.6 17.3 8.5 23 4.6 2.1
Monks-problems-3-train 30.5 18.9 24.6 17.3 114 4.9 5.0 2.3
Postoperative-patient-data 0.4 0.6 0.8 0.9 0.2 0.0 0.1 0.3
Primary-tumor 9.0 10.5 9.9 7.4 3.4 2.8 3.1 4.1
Prnn-crabs 0.4 0.1 0.2 0.1 14.2 8.8 8.2 7.2
Prnn-cushings —0.1 —-0.5 0.6 1.2 20.4 21.1 21.1 16.6
Prnn-fglass 1.4 1.1 0.8 0.5 10.6 8.7 11.7 8.5
Prnn-synth 0.3 0.6 0.2 0.1 1.0 —-0.4 —0.2 —0.3
Profb 4.5 39 4.7 4.4 —0.8 —0.3 —0.4 —0.1
Schizo -0.3 -0.7 —0.1 —0.2 4.6 43 1.6 4.3
Segment 0.0 —0.1 0.0 —0.1 1.5 1.0 1.1 1.0
Shuttle-landing-control 0.2 0.4 0.0 0.2 —-0.5 2.0 1.0 —2.2
Solar-flare-1 10.3 6.4 8.8 8.6 2.5 0.8 0.8 0.0
Solar-flare-2 3.6 3.6 2.7 2.7 0.5 0.4 0.3 0.2
Sonar 42 1.6 0.8 1.9 52 6.7 3.7 32
Soybean 48.7 39.5 44.0 37.3 10.9 7.4 45 8.0
Spectf-test 1.3 1.2 1.4 1.0 -0.3 0.0 —0.4 0.2
Spectf-train 11.8 12.5 9.0 8.0 9.7 11.7 8.5 6.8
Spectrometer 0.7 -23 39 1.7 10.6 11.6 7.8 9.1
Spect-test 0.3 0.2 0.1 0.2 0.1 0.2 0.3 0.2
Spect-train 9.4 8.4 8.0 6.8 11.4 8.8 43 49
Sponge 22 2.1 2.1 1.5 2.3 1.8 1.6 1.2
Tae —2.8 -1.6 -1.3 —2.6 14.0 134 10.9 12.8
Tic-tac-toe 26.8 13.1 15.5 14.2 12.5 10.6 7.8 7.8
Trains 40.7 46.0 433 29.3 33.0 42.3 40.7 333
Vehicle 1.5 0.5 0.9 0.2 3.8 2.8 3.8 22
Vote 9.5 8.0 8.0 6.9 2.1 1.1 1.0 1.0
Vowel 0.2 0.1 0.0 0.1 17.7 194 11.8 9.4
Wine 0.2 0.0 0.1 0.1 3.8 33 3.1 35
Zoo 35.0 25.0 21.3 26.0 14.4 8.8 133 14.1
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