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HIGHLIGHTS

e Anovel CNN architecture is proposed to learn the shared, discriminative features of multi-modal sensors.

e Adeeply supervised CNN is proposed that includes the knowledge of earlier layers of the CNN into the global model learning.

e End-to-end model learning is done on relatively small training data but the learned model generalizes well to various datasets and applications.
e The proposed method achieves state-of-the-art performance in challenging object and scene recognition datasets.
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Article history: Recognizing semantic category of objects and scenes captured using vision-based sensors is a challenging
Received 28 July 2016 yet essential capability for mobile robots and UAVs to perform high-level tasks such as long-term

Available online 10 March 2017 autonomous navigation. However, extracting discriminative features from multi-modal inputs, such as

RGB-D images, in a unified manner is non-trivial given the heterogeneous nature of the modalities.
We propose a deep network which seeks to construct a joint and shared multi-modal representation
through bilinearly combining the convolutional neural network (CNN) streams of the RGB and depth
channels. This technique motivates bilateral transfer learning between the modalities by taking the outer
product of each feature extractor output. Furthermore, we devise a technique for multi-scale feature
abstraction using deeply supervised branches which are connected to all convolutional layers of the
multi-stream CNN. We show that end-to-end learning of the network is feasible even with a limited
amount of training data and the trained network generalizes across different datasets and applications.
Experimental evaluations on benchmark RGB-D object and scene categorization datasets show that the
proposed technique consistently outperforms state-of-the-art algorithms.
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1. Introduction

Object and scene category recognition is a challenging problem
that involves detection, perception and classification. Multi-modal
vision sensors such as RGB-D cameras can be used to overcome
the limitations of trichromatic vision cameras especially in the
presence of noise due to texture variations, illumination changes,
cluttered scenes, viewpoint changes, and occlusions. In recent
years, RGB-D sensors have enabled rapid progress in different au-
tonomous robotic vision applications such as object detection [1],
object grasping [2], scene labelling [3], multi-view human action
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recognition [4] and semantic scene understanding [5]. However, a
common challenge in these applications is the representation and
encoding of the heterogeneous information of the input modalities
(i.e. RGB gives the relative reflectance intensities while depth maps
give the distance from the sensor to the object in millimetres).
Therefore, designing an effective feature representation which
captures the shared information from both modalities may serve as
a key ingredient towards more robust and accurate RGB-D image
based semantic scene and object categorization.

Most existing algorithms (e.g. see [6-10]) follow feature ex-
traction procedures that treat RGB and depth channels separately,
either using hand-engineered methods or models learned for in-
dividual channels using the same algorithm. In these cases, the
combination of the cross-modality features is reduced to a simple
concatenation to get the final representation. These approaches,
while giving considerable performance gain in many recognition
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tasks, lack intuition on the combinatorial factors that governs the
underlying behaviour of such phenomenon. Perhaps, this problem
can be better elucidated in the context of the feasibility to perform
joint learning between the differing input channels. If the differ-
ent modality inputs can be modelled in a mutual feature space
where they share complementary information, then we can have
better understanding of the pairwise interaction between these
modalities and explain its importance for more enhanced category
recognition performance.

The recent breakthrough of CNN based feature extraction, es-
pecially those pre-trained on ImageNet [11] has opened up many
possibilities in robotics vision research. This owes primarily to the
effectiveness of the activations of the fully connected layers as a
generic representation for many different categorization tasks [12].
Recent works [13,14] have suggested that earlier convolutional
layers also contain semantically discriminative properties that can
enhance recognition performance. Moreover, the layer-wise fea-
tures can not only embed multi-scale representation [15], but also
aid in the localization of image parts [16]. However, the major
obstacle in extending this idea to the RGB-D domain is the differing
nature of the input modalities and designing the network architec-
ture that takes into account the supervised signals from different
layers of the multi-stream CNN network.

We approach these problems by devising a novel network ar-
chitecture called Deeply Supervised Multi-modal Embedding. This
method adopts the bilinear CNN [18] as the basic building module
which performs outer product to combine the activation of the
feature extractors from multi-stream CNN as shown in Fig. 1. The
resultant bilinear vector is then directly connected to a softmax
layer following normalization layers enabling an end-to-end opti-
mization of the CNN streams. Additionally, in order for the model to
reason a higher degree of feature abstraction, we embed contextual
information by connecting each convolutional layer of both CNN
streams to a bilinear feature extractor layer. The motivation of the
deep supervision is based on the observation that certain classes
in RGB-D datasets favour low-level features at the earlier layers
of CNNs, while others favour high-level features at later layers.
Although the architecture design is generic for any multi-channel
input, we evaluated the proposed technique on RGB-D image cate-
gorization. In particular, we achieve state-of-the-art performance
on the datasets of RGB-D object and scene recognition. We also
show that the resultant model can be used to generate general-
purpose representation for the RGB-D image categorization task.
Our code and pre-trained model will be made publicly available to
the research community.

2. Related literature
2.1. RGB-D image recognition

RGB-D image recognition algorithms can be divided into three
major categories based on the feature extraction technique:
hand-engineered [19,20,10,21], unsupervised feature learning
based [8,9,22,23,6,24], and supervised feature learning based
[7,25-28,14]. Prior works in this domain employed manually
crafted local features such as SIFT [29] and spin images [30] for
colour and depth images respectively. For real robotics application,
although these techniques have been widely used due to their
simplicity [20,10,21], implementation-wise it can be cumbersome
and time-consuming where the detection and the computation of
the local features need to be repeatedly applied for each novel
image during test time.

This problem can be partially alleviated by designing feature
representation based on learning algorithms. Most of these algo-
rithms either use channel specific feature extraction algorithms,
or employ a single algorithm multiple times to extract features

from each channel individually. For example, Bo et al. [9] proposed
Hierarchical Matching Pursuit (HMP) as a generic model to extract
features separately for five different channels including 3D surface
normals. Zaki et al. [6] learned a patch-wise deep network for each
of the RGB-D channels and their derivative maps. These algorithms
share a common procedure to fuse the multi-modal features i.e.
by concatenating the feature vectors of RGB and depth. There are
three drawbacks of this procedure. Firstly, this method generates a
high-dimensional feature representation which is not efficient for
use with multi-class classifiers. Secondly, the total training time
increases as a function of the number of input channels. Most
importantly, these methods neglect the relationship between the
differing modalities at the feature extraction stage as their features
are learned independent of each other.

2.2. Convolutional neural networks based RGB-D image recognition

In order to construct a well-trained model, learning algorithms
typically and heavily rely on large-scale training data [31,32].
Although low-cost RGB-D sensors, such as the Microsoft Kinect
camera, can be easily used by the robotics research community, the
number of sufficiently scaled training datasets of depth images is
much more scarce compared to the colour images, where datasets
such as ImageNet [33] provides more than a million colour images
of a thousand object categories. In contrast, one of the largest scale
depth datasets only contains approximately 50,000 images [20]
of 51 object categories. Therefore, recent works have focussed
on transferring the knowledge of the CNN model pre-trained on
ImageNet dataset to extract discriminative features from depth
images [25,26,14].

The key strategy of the above-mentioned works for the knowl-
edge transfer is to employ an encoding method for the depth
images such that the encoded depth images closely emulate the
distribution of the corresponding RGB images. Remarkably, this
simple technique allows the algorithm to harness discriminative
features from the depth images which are important for catego-
rization tasks. Notably, as already commonplace in the computer
vision literature, these works utilize the fully connected layer acti-
vations as feature representation. However, as pointed out by [ 14],
the activations of the convolutional layers, which compose of ear-
lier layers in the CNN feature hierarchy, can also be used to con-
struct discriminative representation as complementary features
to the fully-connected layer activations (see also the discussions
in [16] and [13]). These works are closely related to our method
in this paper in terms of designing feature representation based
on the convolutional layers of CNN. Going beyond simple pooling
and pixel-wise features, in this paper, we devise a Directed Acyclic
Graph based architecture to allow end-to-end learning with the
incorporation of multiple supervised layers.

2.3. Multi-stream convolutional neural networks

Our work can also be considered as a member of the family
of multi-modal learning and multi-stream CNN [34,23,28,35,36],
where the RGB and depth information are used together in the
learning framework. However, Jhuo et al. [23] have only used the
depth information as an additional regularizer for the dictionary
learning. In the context of CNN based learning, Wang et al. [35]
proposed an additional layer that combines the individual CNN
streams from RGB and Depth data. Therefore, their technique finds
the complementary elements between the CNN features of only the
proceeding layers and not at every convolution layer as proposed
in this paper. Similarly, Eitel et al. [28] fused the information from
RGB and depth images by concatenating the CNN streams with
a new fully connected neuron layer before classification. In this
work, we propose to combine multi-modal features with a bilinear
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Fig. 1. Network architecture of the proposed Deeply Supervised Multi-modal Embedding for RGB-D feature learning. A pre-trained CNN [17] is used as the backbone network
to initialize both the RGB and the depth streams. The fully connected layers at the end of the pre-trained network are discarded and multiple bilinear layers are introduced

at all convolution layers.

linear that not only harnesses complementary features, but also
captures local pairwise interactions of the features.

CNN architectures with multiple supervised layers are becom-
ing increasingly popular among researchers. The additional su-
pervision can either be applied at arbitrary CNN layers [15,37] or
as a separate learning objective or regularizer [38]. Motivated by
these techniques which have shown improved image categoriza-
tion accuracy for multiple tasks, we exploit deep supervision in
the context of multi-modal recognition. In particular, we combine
the features at each convolutional layer of the RGB and depth CNN
stream using a bilinear layer in order to include the knowledge
of the earlier layer features into the categorization prediction and
individually train the local classifiers. End-to-end optimization is
then performed by minimizing the categorization error using stan-
dard gradient descent and back-propagation with the inclusion of
the supervision signals from all local branches.

3. Proposed methodology

The depiction of the proposed network architecture is provided
in Fig. 1. In summary, the network consists of a two-stream CNN
which takes an RGB image as input to one stream and the cor-
responding depth image as input to the second stream (referred
to as RGB CNN and depth CNN respectively). The activations of
the feature extractors for both streams are combined in a cross-
modality fashion via a bilinear operation at various feature scales.
The resultant shared representation at each network branch is then
passed to an independent softmax classifier for multi-scale joint
(RGB+Depth) deeply supervised learning (Section 3.1). A simple
scheme of gradient computation for each network branch allows
performing a seamless and efficient end-to-end optimization (Sec-
tion 3.2). Moreover, it is worth noting that the entire network is
trained using a limited amount of RGB-D training images. However,
the trained model can be directly used for performing various
image categorization tasks thereby highlighting its potential as a
generic RGB-D feature extractor.

3.1. Deeply supervised multi-modal bilinear CNN

Bilinear models have been used to address recognition prob-
lems where two independent factors (such as style and content)

underlie a set of observations (e.g. characters) [39] and to fuse dual
stream CNN for fine-grain visual recognition [18]. In this work,
we deploy bilinear models for learning and disentangling shared
discriminative features between multi-modal inputs for generic
scene and object categorization. Moreover, we use bilinear models
to combine the features from different modalities at various levels
of feature hierarchy. The different levels of feature hierarchy are
able to capture coarse-to-fine discriminative representations for
visual recognition.

For the description of our model, let us assume a pre-trained
chain-structured CNN (such as AlexNet [11]) model as an ini-
tialization and a “backbone” network (for the description of the
pre-trained CNN that we used in this paper, please refer to the
Section 3.3). The network consists of multiple operation of con-
volution, pooling, local contrast normalization (LCN) and Rectified
Linear Unit (ReLU) non-linearity, followed by multiple fully con-
nected neurons towards the end of the network. We then discon-
nect all fully connected layers after the final convolutional layer’s
ReLU module and do not make use of these layers throughout
this paper. Although a lot of research works have proven that
these layers are the most discriminative representation of a CNN
network [12,25,26,40], we will empirically show that without the
use of the features from these layers, we can still record high
recognition accuracy given appropriate technique to exploit the
earlier layers of the network.

Let (X, T} = 9 x?, tP}L, be our N training samples where
XV e R, xY € R?and t9 e RC are the RGB images, depth
maps and the corresponding one-hot vector indicating the class
labels of each input respectively. In order to encode a depth map
in a way that is compatible with the pre-trained CNN, we follow
the technique of Zaki et al. [14]. Particularly, we first calculate
the vertical and horizontal derivative approximations of the depth
map as

Gy =Ky xxY), :
G, = K, * x9 (1)
y — Y D *

In Eq. (1), the depth map xg) is convolved by horizontal and vertical
Prewitt kernels K, and K, using a two-dimensional convolution
operator x. We then compute the gradient magnitude, G, =

/G; + G; and the gradient direction, G = arctan(Gy, Gy). A
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Fig. 2. Encoding of the depth image of a coffee mug. From left: (a) raw depth image, (b) gradient magnitude of the depth image, (c) gradient direction of the depth image

and (d) the encoded depth as a result of concatenation of (a), (b) and (c).

three-channel depth map is constructed by concatenating the orig-
inal single channel depth map with the gradient magnitude and
direction maps, given by xg’) = [xg), Gm, Gp]. Fig. 2 visualizes the
three channel depth map used as the input to our deep network.
Note that any plausible encoding technique such as HHA [25],
depth-jet [28], or colourization technique [26] can be used to
encode the depth map to fit the typical pre-trained CNN setting.
Consider two streams of a pre-trained CNN network as depicted
in Fig. 1. Each RGB and depth CNN which outputs at convolutional
layer I € [1,2,...,L] can be represented by three-dimensional
tensors denoted as ¢y e R*¥xd gpd ) ¢ R Oxd?
respectively. The tensors of RGB CNN and depth CNN are fused at
each location by applying the Euclidean outer product given by

T
0 =V, 2)

where the output f) € R?*¢ defines the bilinearly combined ma-
trix and both C,/e(l) and ng) are the reshaped versions of the tensors
cg) and Cg) into matrices of dimension xy x d. The bilinear matrix
is then flattened into a (1 x d?)-dimensional vector before being
passed to the subsequent normalization modules. Since the aggre-
gation of the bilinear vector ignores the exact spatial location of the
features, bilinear models are thus orderless [ 18] and can be used to
generalize the notation of other orderless methods such as spatial
pyramid matching [41] and fisher vectors [17]. Using a similar
paradigm, we can visualize our multi-modal bilinear models akin
to learning a shared dictionary model from both RGB and depth
features, where the models automatically capture discriminative
features and ignore redundant or irrelevant information from both
modalities in a unified manner.

As depicted in Figs. 1 and 3, the bilinear vector is feed-
forwarded through normalization layers which perform successive
operations of signed square-rooting, g = sign(f"),/|f"| and L,
normalization, h" = g®/||g?|, to further enhance the discrim-
inative property of the vector [17,12]. The normalized vector is
then fully-connected to a C-way softmax classification layer for
category prediction. Note that this bilinear operation and category
supervision are performed at every network branches (i.e. every
convolutional layer activations of RGB and depth CNNs), hence the
optimization process is carried out at all local regions indepen-
dently to aid the global end-to-end network training and to combat
the gradient vanishing problem at the earlier CNN layers [15].

3.2. Network training and gradient computation

For end-to-end network training, we start by defining the local
objective function at every bilinear branches that we intend to
solve as

N
.1 ORI OIRONT

argmin — E 0P X9 60 o, 6y, t), (3)

o o0 o0 N 4=

R "D YF 1=

where 0¥ = (W b}, 00 = (W b} and 67 = (W, b
are the parameters of the fusion CNN stream after the bilinear

layer, the RGB CNN stream and depth CNN stream respectively
at each network branch I and g(x&z’), xg), 0,%”, Gg), 0;’)) is the func-
tion that maps the pre-processed RGB-D images from d — C.
£ (.) denotes the conditional log-likelihood softmax loss func-
tion. Stochastic gradient descent with backpropagation is used to
minimize the objective function and update the parameters. The
structure of our multi-modal bilinear model resembles a Directed
Acyclic Graph (DAG) as opposed to the standard chain structure
of the conventional CNN. Hence, due care needs to be taken for
the computation of partial derivatives at each local branch during
the learning process. It is also worthy to point out that we do
not compute the overall objective function as the sum of losses
of each bilinear branch which is a standard practice in recent
DAG-based networks [37,15]. In contrast, we first solve each local
objective function independently for each bilinear branch at | =
1,2, ...,L— 1before we back-propagate the resultant gradient to
the “backbone” network. Once the respective gradients are prop-
agated to the “backbone” network, gradients from the “backbone”
network and the bilinear branches are combined at the node (see
Eq. (6)). Next, we optimize the global objective function where
we regard the softmax classification at the final bilinear branch
£ as the global objective. Moreover, the convergence of the
objective, training and validation curves is monitored based on
this objective function. The motivation for such an approach is to
avoid biasing the loss towards early bilinear branches which take
shorter paths to the prediction layer. The gradient computation
of the entire network is simplified by recursively computing the
chain rule of gradients. Let d2() /dfl denote the gradient of the loss
function £ with respect to the branch-specific bilinear vector f.
Therefore, by applying the chain rule of gradients, the gradient of
each convolutional layer’s activations for RGB CNN C,;“) and depth
CNN ¢ can be calculated as

dc® _ o de '
ac — P \aftv )

dc® g (dc
=C —_—
dcl’)“) R\ afn )°
where the chain rule of localized gradients along with the latter

chain-structured network yields d2® /df"’ which can be expressed
as

dc® ( dc dh® ng))

(4)

(3)

df) — \ dh() dg® dfd

where g and h"” are the signed square-rooting and L, normaliza-
tion modules respectively.

Now, let us consider the (L — 1)th branch in Fig. 3. In this case,
the parent node receives gradient values of the same dimension
from two different child nodes where the same case is also true
at all antecedent convolutional layers. In such a case, we simply
compute the multiplication of the gradients to output a single
equi-dimensional tensor. Concretely, if the %radient at the tensor

of the RGB CNN ¢V € R¥ D Dxd T ith respect to the
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Fig. 3. An illustration of gradient calculation at the bilinear model branches. The ® symbol denotes the combination operation between the RGB CNN and depth CNN at
convolutional layer activation. For detailed explanation on the calculation, please refer text.

L—1) 5 g(L—1

global loss is denoted by dc®/dcl ™" e R¥VxA ! then

the calculation proceeds with

dc drc®) decd=1
a0 " |\ ) ° e (©)
R R R m,n

where dct-/del ™V e R¥UxdY ¢ the tensor gradient
originating from the bilinear branch (after reshaping from the
matrix). The operator o denotes the Hadamard product which
performs element-wise multiplication for each entry at (m, n). The
calculation is the same for the lower layer branches! =1, ...,L—1
and can also be conveniently duplicated for the depth CNN:

dc drc®) dctd=1
a0 = | \ac® ) ° e ' )
D D D m,n

3.3. Implementation details and classification

The overview of the entire pipeline for the multi-modal em-
bedding model learning, feature extraction and categorization is
illustrated in Fig. 4. We implemented the network architecture
with the open-source MatConvNet [43] CNN toolbox and trained
it on a single Tesla K40c graphics card. We initialize the RGB
and depth models with the pre-trained VGG-M [17] model which
has five convolutional layers and three fully connected layers and
has been trained to classify a large-scale visual image dataset,
ImageNet [33]. Formally, let us assume a CNN model which con-
sists of consecutive modules of convolutional layer L(k, f, s, p),
max-pooling MP(k, s), Local Contrast Normalization LCN, fully con-
nected layers FC(n) and rectified linear unit (ReLU) RL, where k x k
is the receptive field size, f is the number of filters, s denotes the
stride of the convolution and p indicates the spatial padding. The
architecture of the model is given by: L(7,96,2,0) — RL —
LCN — MP(3,2) — L(5,256,2,1) - RL — LCN — MP(3,2) —
L(3,512,1,1) - RL — L(3,512,1,1) = RL — [(3,512,1,1) —
RL — MP(3, 2) — FC(4096) — RL — FC(4096) — RLFC(1000).

In this work, we disconnect the fully connected layers towards
the end of the network which is equivalent to discarding staggering
86% of the network parameters i.e. 40 million out of the 46 million
parameters were discarded and never been used to trained our
model. Besides saving a lot of memory requirement, this also
decreases the number of parameters that need to be learnt. Next, a
bilinear branch which is composed by the normalization modules
and a softmax layer as described in Section 3.1 is connected to each
convolutional layer output after the ReLU non-linear transforma-
tion. We then feed-forward the RGB-D image batches through the
network and arrive at the softmax classification layer.

For each softmax layer at the end of a bilinear branch, a two-
step training procedure [ 18] is adopted. To elaborate, we train the
final classification layer of a bilinear branch for multiple epochs
with logistic regression and then fine-tune and save the branch pa-
rameters. This process is performed for each branch. Next, we fine-
tune the entire network for both RGB and depth inputs with the
inclusion of branch-specific gradients as discussed in Section 3.2
and with a relatively low global learning rate (i.e. 0.001). This
is done to ensure that the local softmax layer can quickly and
sufficiently learn the parameters using new inputs and class labels
while maintaining slow evolution of the other network parame-
ters. The fine-tuned models are then used to extract the features
from RGB-D images (Section 4.3).

For the categorization, we employ Extreme Learning Machines
(ELM) [44] as the multi-class classifier. ELM is a neural network
based classifier which embeds a high degree of non-linearity but a
magnitude faster to train and evaluate than other classifiers such as
SVM [6,14,44,45]. Specifically, let H = (31, Wish) 4 by,) € RH
be the latent activations with the target labels T, where h, o (.), Wi,
and b;, are the normalized bilinear activation, piecewise sigmoidal
activation function, randomized orthogonal input weight matrix
and the bias vector, respectively and A is the regularization coeffi-
cient. Thus, we intend to optimize the following objective function

min Juw = ~181% + = HB — TIZ (8)
r; ELM — 2 F 2 2

The efficiency of ELM classifier is ensured by solving the ob-
jective function in Eq. (8) using a closed-form solution. Based
on the linear least square, we calculate the generalized Moore-
Penrose pseudo-inverse of H denoted by H' and hence compute
the solution, where we deploy the method of Huang et al. [44] that
uses orthogonal projection method to calculate the value of Hf.

H'T, for A = 0.

1 -1
<Xl + HTH) H'T, ifC > Nyfori #0.

B = (9)

1 -1
HT(XH-HHT) T, if C < Ny for A # 0.

In Eq. (9), I denotes the identity matrix and Ny indicates the
number of neurons in the latent activation layer.

4. Experimental setup

The proposed algorithm has been evaluated on four benchmark
datasets for RGB-D image category recognition tasks including
2D3D Object [21], SUN-RGBD Scene [5], NYU V1 Indoor Scene [42]
and NYU V2 Indoor Scene [46] datasets. These datasets were cho-
sen to evaluate our algorithm for two distinctive applications:
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Fig. 4. Overview of the entire pipeline for RGB-D image categorization: (a) model learning , (b) training and (c) testing phase. The learning of the multi-modal embedding
is done on the Washington RGB-D Object Dataset [20] for multiple epochs. In this figure, we only show some sample images from the SUN RGB-D Scene Dataset [5] for the
training and testing phase as the procedures are the same for the categorization of 2D3D [21] and NYU V1 Indoor Scene Dataset [42].
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Fig. 5. Sample images from (a) Washington RGB-D Object Dataset [20], (b) 2D3D Object Dataset [21], (c) SUN RGB-D Scene Dataset [5] and NYU V1 Indoor Scene Dataset [42].
Each row represents RGB (cyan), depth (magenta) and three-channel depth map (green) respectively.

RGB-D object recognition and scene categorization. Some sample
images are provided in Fig. 5.

4.1. Training dataset

A major strength of our technique is that we train our network
on the Washington RGB-D object dataset [20] only and show that it
generalizes to other datasets for two different tasks. Note that the
Washington dataset is relatively limited in size and the number
of object categories. Moreover, it has samples of objects and no
sample for scenes. This dataset comprises 300 object instances
which are organized into 51 categories of common household
objects. For each instance, multi-view RGB and 2.5D images are
provided as the objects were captured on a revolving turntable. We
used the training and validation partitions of the Washington RGB-
D data to train our network. We used the cropped version of the
data which was generated based on the masked images provided
with the dataset. We also performed simple data augmentation by
randomly mirroring the RGB and depth images.

4.2. Evaluation datasets

2D3D Object Dataset [21] is an object recognition dataset
captured using Kinect-like sensors. The dataset consists of 16
categories from 163 highly textured common objects (e.g. book,
dish liquid). We carefully follow the procedure of Browatzki et
al. [21] for the purpose of comparative analysis. Concretely, we

exclude the classes with insufficient samples including phone and
perforator while the classes knife, spoon and fork are combined into
a joint class of silverware. Therefore, the final dataset used in the
evaluation has 14 classes from 156 object instances. The data was
randomly sampled to pick six instances per class for training while
testing on the rest. The only exception is the class scissors which
has less than six instances. We ensure that at least one instance
is available for validation in this case. For each instance, only 18
frames are randomly selected for both training and testing sets.

SUN RGB-D Scene Dataset [5] is a benchmark suite for scene
understanding and the largest RGB-D scene dataset to date. We
adapted the exact training/ testing split for scene classification
as suggested by the dataset authors. Specifically, we choose 19
scene categories which have more than 80 images for evaluation.
The final number of images for training and testing sets are 4845
and 4659 images respectively. Complex indoor scenes with various
object clutter and very minimal inter-class variability make this
dataset substantially challenging for classification.

NYU V1 Indoor Scene Dataset contains 2284 samples from
seven scene classes. As suggested by Silberman et al. [42], we
exclude the class cafe and split the samples into disjoint training/
testing sets of equal size. Care has been taken to ensure that the
frames captured from the same scene appear either in the training,
or in the test set. In this paper, we only use the categorical label for
each scene frames and do not use the ground-truth segmentations
provided with the dataset.
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Fig. 6. The classification accuracy trends for branch-specific D-BCNN features and their combinations for 2D3D Object Dataset [21], SUN RGB-D Scene Dataset [5], NYU
V1 [42] and NYU V2 [46] Indoor Scene Dataset. Note that high-level features (represented by the bilinear vectors at the final branch D-BCNN; ) are discriminative for some
datasets, while other datasets favour low-level features (represented by the bilinear vectors at the earlier convolutional layers).

Table 1
Performance comparison between the proposed D-BCNN features before and after
applying PCA dimensionality reduction on 2D3D Object Dataset [21].

Methods D-BCNN; D-BCNN, D-BCNN;
Without PCA 89.2 915 92.4
PCA 89.6 92.2 94.9

NYU V2 Indoor Scene Dataset is an extended version of the
NYU V1 which consists of 27 scene categories with 1449 images. In
this paper, we replicate the procedures used by [46]. Particularly,
the scene categories are re-organized into 10 scene categories
consisting nine common scene categories such as bedroom, bath-
room and bookstore and other scenes are included in the category
others. The standard training and testing split is publicly available,
containing 795 RGB-D for training and 654 images for evaluation.

4.3. Feature extraction

After training the network on the Washington RGB-D [20]
dataset, we extract the features for 2D3D, SUN RGB-D and NYU
V1 Indoor Scene datasets without fine-tuning the network. Feature
extraction is performed in our model by feed-forwarding the RGB-
D images through the RGB and depth CNN and combining them
at the bilinear branches. For RGB-D based recognition, we extract
the penultimate layer, which is the last normalized fully-connected
bilinear activation, as the final representation for classification. We
perform PCA to reduce the dimensionality of each branch to 1000-
D. This corresponds to preserving only 0.4% of the total energy
for some branches (e.g. bilinear operation at branch 5 produces a
vector of dimensionality 512 x 512 = 262,144). While this may

seem counter-intuitive for recognition task, based on our observa-
tion, this massive dimensionality reduction does not degrade the
performance of the representation for any dataset as the bilinear
activation vectors are extremely sparse and can be conveniently
compressed to be used as compact representation.

5. Results

In this section, we first provide the model ablative analysis
to investigate the effect and efficacy of several modules of our
proposed network. The best-performing representation is then
benchmarked against various baseline and state-of-the-art meth-
ods for each dataset.

5.1. Model ablation

We first evaluate the performance of the proposed D-BCNN
with and without PCA dimensionality reduction using the 2D3D
Object Dataset. As depicted in Table 1, D-BCNN with PCA consis-
tently increases the recognition accuracy for each branch-specific
features. This shows that applying dimensionality reduction on the
D-BCNN features not only leads to a compact representation but
also increases the discriminative property of the learned features.
Next, We investigate the effect of branch-specific bilinear features
and their combinations in terms of classification performance.
This includes the discussion on the discriminative property of the
branch features for different datasets and specific classes.

Fig. 6 shows the classification accuracy trends for each branch-
specific bilinear feature and their combinations on the 2D3D Object
Dataset [21], SUN RGB-D Scene Dataset [5] and NYU V1 Indoor
Scene Dataset. The last bilinear branch (D-BCNN5 ) gives the highest
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Fig. 7. Confusion matrices based on the classification accuracy of branch-specific bilinear features: (a) D-BCNN3, (b) D-BCNN,4 and (c) D-BCNNs in SUN RGB-D Scene

Dataset [5]. This figure is best viewed with magnification.

overall accuracy for individual branch features. These results are
expected as the higher layers of CNN have been shown to be rich
in semantically meaningful features. However, interesting trends
are observed for the classification results of the combined features.
Specifically, the accuracy consistently increases after the concate-
nation of lower branch features with the higher branch features
for SUN RGB-D. In 2D3D, the results show the opposite trend in
which adding lower branch features to the higher branch features
degrades the performance. On the other hand, the accuracy in-
creases in NYU V1 when the last two branches features (D-BCNN4
and D-BCNN5 ) are combined. This shows that capturing multi-scale
features at different level of details using the deep supervision is
more important for scene classification task as it requires not only
the global spatial envelope, but also more precise detection and
localization of objects.

To visually analyse this, let us consider the confusion matrices
for D-BCNN3, D-BCNN4 and D-BCNNs of SUN RGBD dataset in
Fig. 7. The higher level branches give high accuracy for classes
such as classroom, office and rest space that require more contextual
abstraction of semantic information akin to the concept of spatial
envelope [47]. Conversely, classes that need more specialized and
subtle low-level information such as lab and kitchen put more
emphasis on the lower branch features. In addition, there are also
classes such as library and furniture store that favour both low-level
and high-level semantics as they intuitively contain many scene
parts and objects as well as the global structure.

Moreover, we plot the Intra-class Correlation Coefficient
(ICC) [48] recorded for each class in SUN RGB-D dataset using
different branch-specific bilinear features in Fig. 8. Here, a higher
value denotes a higher resemblance between features in a class.
In this figure, we can see that different branch features are more
discriminative for some specific classes than others. Interestingly,
our model learns these multi-scale coarse-to-fine features auto-
matically without employing any additional part detectors or mid-
level regions-of-interest.

5.2. Results on 2D3D object recognition dataset

We compare the performance of the proposed algorithm with
other benchmark methods on the 2D3D object dataset [21]. For
the baseline method, we extract the first fully connected layer
activations after the ReLU function (fcg) from VGG-M [17] for
both RGB and the three channel depth maps (including gradi-
ent magnitude and direction of depth) as detailed in Section 3.1.
We benchmark the algorithm against state-of-the-art methods
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Fig. 8. Intra-class Correlation Coefficient for each class in the SUN RGB-D test

dataset using branch-specific features.

including combination of hand-crafted features (2D+3D) [21],
Spatial Pyramid Matching (SPM) [41], Reconstruction Independent
Component Analysis (RICA) [49], Hierarchical Matching Pursuit
(HMP) [9], deep Regularized Reconstruction Independent Compo-
nent Analysis (RZICA) [23], Subset-based deep learning (Subset-
RNN) [27], Discriminative feature learning with Bag-of-Word en-
coding (DBoW) [50] and Multi-modal Sharable and Specific Feature
Learning (MMSS) [51]. All results are taken from the original pa-
pers, except for SPM and RICA which are taken from Jhuo et al. [23],
and reported in Table 2.

As can be seen, our proposed D-BCNN outperforms all existing
methods and achieves a 2.1% increment over the closest perform-
ing algorithm Subset-RNN [27] which needs an expensive subset
class selection method. Our method also outperforms unsuper-
vised feature learning methods [49,23,9] in which the models are
learned separately for individual channels. These results highlight
the importance of deep supervision and learning cross-modality
features in a unified framework. Moreover, our method also out-
performs MMSS [51] method which is similar to our proposed D-
BCNN in terms of learning multi-modal shareable feature embed-
ding. However, without explicitly enforce discriminative terms to
learn this embedding, our method can still capture the discrimi-
native features from both RGB and depth modalities in a unified
manner, which is reflected by the significant accuracy difference
from MMSS.

Furthermore, our method recorded a significant performance
gain of 8.2% from the fcg features of VGG-M which is used as the
‘backbone’ network for our model training. This shows that using
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Table 2

Performance comparison in terms of recognition accuracy (%) of the proposed D-BCNN with state-of-the-art methods

on 2D3D object dataset [21].

Methods RGB D RGB-D Remark

2D+3D [21] ICCVW '11 66.6 74.6 82.8 Hand-engineered
SPM [41] CVPR 06 60.7 75.2 78.3 Hand-engineered
RICA [49] NIPS '11 85.1 87.3 915 Feature learning
HMP [9] ER’13 86.3 87.6 91.0 Deep learning
R%ICA [23] ACCV'14 87.9 89.2 92.7 Deep learning
Subset-RNN [27] Neurocomp. '15 88.0 90.2 92.8 Deep learning
DBoW [50] [IROS'15 85.8 88.1 91.2 CNN+BoW
MMSS [51] ICCV'15 - - 91.3 CNN

fcs Baseline 84.9 83.8 86.7 CNN

D-BCNNs This work - - 94.9 CNN

D-BCNN3 445 This work - - 92.3 CNN

Table 3

Performance comparison in terms of recognition accuracy (%

on SUN RGB-D Dataset [5].

) of the proposed D-BCNN with state-of-the-art methods

Methods RGB D RGB-D Remark
Gist+RSVM [5] CVPR'15 19.7 20.1 23.0 Hand-engineered
Places+LSVM [5] CVPR'15 35.6 22.2 37.2 CNN
Places+RSVM [5] CVPR’15 38.1 27.7 39.0 CNN
SS-CNN [52] ICRA’16 36.1 - 413 CNN
DMFF [53] CVPR'16 37.0 - 415 CNN
FV-CNN [54] CVPR'16 - - 48.1 CNN

fce Baseline 49.0 35.9 50.5 CNN
D-BCNNs This work - - 54.3 CNN
D-BCNN3. 445 This work - - 55.5 CNN

our model to learn shared cross-modality features can significantly Table 4

increase the network performance. We also perform classification
using the concatenation of our D-BCNN features and the fcg fea-
tures. However, the performance slightly degrades (by about 3%
compared to the D-BCNN accuracy) which reflects that our model
is able to learn a different set of discriminative features which are
not complementary to the ‘backbone’ CNN that was learned using
only the colour information. Moreover, our model design is generic
and can be directly applied to modify any existing pre-trained CNN
models.

5.3. Results on SUN RGB-D scene dataset

We also perform comparative analysis of our algorithm on the
recently published SUN RGB-D [5] dataset for scene categorization.
We use the same baseline method (fcg features of VGG-M) that
we used for object categorization. As this dataset is still new,
only a few state-of-the-art methods are available for comparison.
More specifically, three methods are taken from the dataset’s
authors as the pioneer benchmarks; Gist with RBF-kernel SVM
(Gist+RSVM), Places CNN [55] with linear SVM (Places+LSVM)
and Places CNN [55] with RBF-kernel SVM (Places+RSVM). We
also include recent works of Semantic Regularized CNN (SS-
CNN) [52], Discriminative Multi-Modal Feature Fusion (DMFF) [53]
and Modality and Component Aware Feature Fusion (FV-CNN) [54]
for benchmarking. Results are shown in Table 3. The results of all
other methods are taken from the original publications.

This scene dataset is particularly challenging given that the
classical scene-specific descriptors like Gist and Places recorded
only 19.7% and 35.6% accuracy respectively for the RGB-based
recognition (as tabulated in Table 3). Learning object-level in-
formation that can serve as a contextual prior for scene classi-
fication increases the performance by 2.3% (as reported by SS-
CNN [52]). Similar performance is observed for the DMFF which
has heavily tuned the multi-modal CNN to achieve discriminative
feature space. Additionally, using the technique of [54] (FV-CNN)
significantly increases the accuracy of about 6.6%. The core idea
of this technique is that only several information of global and

Performance comparison in terms of recognition accuracy (%) of the proposed D-
BCNN with state-of-the-art methods on NYU V1 Indoor Scene Dataset [42].

Methods RGB D RGB-D  Remark
BoW-SIFT [42] ICCVW’11 552 480 60.1 Hand-engineered
SPM [41] CVPR '06 528 532 634 Hand-engineered
ScSPM [57] CVPR’09 716 645 731 Hand-engineered
RICA [49] NIPS '11 745 647 745 Feature learning
R%ICA [23] ACCV'14 759 658 762 Deep learning

fcs Baseline 732 597 743 CNN

D-BCNN; This work - - 76.2 CNN

D-BCNNy4y5 This work - - 76.7 CNN

D-BCNN3 445 This work - - 76.3 CNN

local descriptors should be used as feature representation. This
criterion is naturally embedded in our proposed multi-scale deep
supervision where low-level and high-level of feature abstractions
are jointly allowed to contribute to the network learning from dif-
ferent modalities, therefore only discriminative features are leaned
in our network, while less informative features will be discarded.

Our proposed algorithm achieves an accuracy of 55.5%, which
is an impressive 7.4% improvement over the best reported results
in the literature so far. This performance is achieved without
separately learning additional prior contextual knowledge from
other sources, since it is naturally embedded in our model. It is
interesting to note that the feature space of VGG-M is already
discriminative, which is shown by its accuracy of 50.5%. Our stan-
dalone model enhances the performance by 5% compared to the
“backbone” network, highlighting the importance of jointly learn-
ing the multi-modal features.

It is worth mentioning that we train the model using only
the Washington RGB-D object dataset which is relatively a small
dataset by modern standard and do not fine-tune it to any scene-
specific dataset. Yet our model outperforms existing state of the
art on scene classification. This is in contrast to other works which
specifically tuned the models to the training images of the scene
datasets. Moreover, the method of DMFF and FV-CNN initialized
their networks using the CNN pre-trained on a large-scale scene
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Table 5
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Performance comparison in terms of recognition accuracy (%) of the proposed D-BCNN with state-of-the-art methods

on NYU V2 Indoor Scene Dataset [46].

Methods RGB D RGB-D Remark

02P [58] ECCV'12 41.0 48.5 50.9 Hand-engineered
SPM (SIFT+G. Textons) [59] [JCV'15 38.9 338 449 Hand-engineered
SPM on segments [59] [JCV'15 - - 454 Hand-engineered
FV-CNN [54] CVPR'16 - - 63.9 CNN

fcs Baseline 55.9 45.1 57.8 CNN

D-BCNNs This work - - 62.5 CNN

D-BCNNy4 5 This work - - 63.6 CNN

D-BCNN3 445 This work - - 64.1 CNN

dataset while we only use the VGG-M model which has been pre-
trained on AlexNet. This finding is important in the context of
real-world robot applications such as online learning in which the
recognition system relies on a limited amount of in-coming train-
ing data. This also shows that besides being a generic model for
cross-dataset recognition, our learned model is also transferable
for cross-domain adaptation [56]. Moreover, as no fine-tuning to
the target dataset is required to achieve high accuracy, our model
is scalable to any size of the testing data.

5.4. Results on NYU V1 indoor scene dataset

The proposed D-BCNN is further evaluated and benchmarked
on the NYU V1 Indoor Scene Dataset [42]. Baseline results are ob-
tained in a similar way as before i.e. using the fcg features of VGG-
M. For a fair comparison, the experimental protocol suggested by
Silberman et al. [42] is used for all methods. We make the compar-
ative study against the BoW-SIFT method [42] of the dataset au-
thors, the Spatial Pyramid Matching (SPM) [41], RICA [49], Sparse-
coding based SPM (ScSPM) [57] and R?ICA [23]. Table 4 shows the
classification accuracy of each method as reported in [42] and [23].

The VGG-M fcg features obtained only 74.3% accuracy for RGB-D
based recognition which is slightly lower than the reported 76.2%
accuracy of R%ICA. Using only the last branch bilinear features
D-BCNNs, the accuracy of our method already gets at par with
the state-of-the-art. The combination of the last two branches
of bilinear features outperforms all the unsupervised dictionary
learning based methods. The results sum up the important ingre-
dients of improved RGB-D image recognition; learning the model
from both modalities with multi-scale supervision. Although R2ICA
learns the model from both modalities, the feature extraction is
still performed channel-wise separately. In contrast, our model
learns a unified model from RGB and depth images and extracts
the features in the combined feature space from the outset, which
motivates the interaction from both distinctive modalities that
enhances recognition performance. It would be interesting to see
how R?ICA performs on the SUN RGB-D dataset which is much
larger than the NYU V1 dataset. However, the code is not publicly
available.

5.5. Results on NYU V2 indoor scene dataset

We also conduct the experiments on the NYU V2 Indoor Scene
Dataset and compare the proposed D-BCNN to other state-of-
the-art methods. These methods include second-order pooling
(O2P) [58], SPM on SIFT (for RGB images) and Geometric Textons
(for depth images), SPM on segmented segments [59] and Modality
and Component Aware Feature Fusion (FV-CNN) [54]. All results for
these methods are taken from [54], including O2P which has been
re-implemented and tested using the same training and testing
split as the other methods.

Firstly, referring to Table 5 it is clear that CNN-based meth-
ods comprehensively outperform the performance of hand-
engineering based methods including the one that needs to learn

an intermediate scene segmentation for feature encoding (SPM
on segments). Our proposed D-BCNN slightly outperform FV-CNN
although we do not explicitly design discriminative objective func-
tion to capture the multi-modality features and only learn the
model using RGB-D object dataset. Also, the accuracy of FV-CNN
was recorded as a combined features with the globally fine-tuned
CNN while our representation is extracted only at the local bilinear
branches.

Moreover, the accuracy of our combined D-BCNN from local
branches shows significant jump from the fcg features, which
reflects that global features at the deeper layers alone are not suf-
ficient to provide strong discrimination for scene categorization.
In addition, the accuracy of the fcg for depth-only recognition is
largely inferior compared to the accuracy for RGB-only recognition
which denoted that geometrical context in indoor scenes must be
complemented by its corresponding appearance information for
improved categorization performance. Without the need to design
a recognition method for both modalities, our network architec-
ture which learns a multi-modal embedding can naturally encode
this criterion in the learning process in a structured manner.

6. Conclusion

We proposed a multi-modal network architecture for deeply
supervised RGB and depth image embedding. The model learns the
combination between the differing modality inputs using deeply
supervised Bilinear Convolutional Neural Networks to output a
joint discriminative feature space from multi-scale feature ab-
straction. Gradient computation at network branches allows seam-
less end-to-end optimization using backpropagation. Although our
network was trained on one dataset of RGB-D object recognition,
it generalizes well to other datasets and other tasks such as scene
classification. The performance of our algorithm was compared
against 12 existing methods on four benchmark datasets for RGB-
D object and scene recognition and achieved state-of-the-art per-
formance in all cases. We intend to publicly release our code and
pre-trained model.
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