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Joint Group Sparse PCA for Compressed
Hyperspectral Imaging

Zohaib Khan, Faisal Shafait, and Ajmal Mian

Abstract— A sparse principal component analysis (PCA) seeks
a sparse linear combination of input features (variables), so that
the derived features still explain most of the variations in the
data. A group sparse PCA introduces structural constraints on
the features in seeking such a linear combination. Collectively, the
derived principal components may still require measuring all the
input features. We present a joint group sparse PCA (JGSPCA)
algorithm, which forces the basic coefficients corresponding to a
group of features to be jointly sparse. Joint sparsity ensures that
the complete basis involves only a sparse set of input features,
whereas the group sparsity ensures that the structural integrity
of the features is maximally preserved. We evaluate the JGSPCA
algorithm on the problems of compressed hyperspectral imaging
and face recognition. Compressed sensing results show that the
proposed method consistently outperforms sparse PCA and group
sparse PCA in reconstructing the hyperspectral scenes of natural
and man-made objects. The efficacy of the proposed compressed
sensing method is further demonstrated in band selection for face
recognition.

Index Terms— Principal component analysis, compressed sens-
ing, image reconstruction, hyperspectral imaging.

I. INTRODUCTION

MULTIVARIATE Image Analysis (MIA) deals with the
analysis of images with multiple measurements per

pixel (such as RGB, multispectral or hyperspectral), generally
by treating individual pixels as samples and the spectral
measurements as the variables [1]. MIA can be useful for a
variety of image analysis tasks such as image interpretation,
visualization, and compression from the spatio-spectral per-
spective [2]. One of the most common statistical modeling
methods associated with MIA is the Principal Component
Analysis (PCA). PCA gives an orthogonal basis aligned
with the directions of maximum variances of the data. It is
useful for projecting the data onto a subspace defined by
the most significant basis vectors. However, each principal
component is a linear combination of all features which makes
measurement of all features essential. In some applications
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(e.g. hyperspectral imaging), each sensed feature (band) may
come with an additional cost of acquisition, processing
and storage. Moreover, not all measured features may be
important for the potential application. Therefore, it is desir-
able to select the most informative subset of the features,
and hence eliminate the cost of sensing the additional, less
informative features.

Lasso (least absolute shrinkage and selection operator) is
a regularized regression method which penalizes the absolute
sum of regression coefficients forcing some of the coefficients
to be zero [3]. It results in feature selection by selecting
features corresponding to the non-zero regression coefficients.
Zou et al. [4] cast PCA as a regression type optimization
problem and imposed lasso to approximate the data with a
sparse linear combination of the input features. The result was
Sparse PCA, which enforces sparsity on the linear combination
of input features used to compute the PCA basis. Such an
approach is good for interpretation of the data but requires
measurement of all the input features. Other algorithms for
computing Sparse PCA include the SCoTLASS algorithm [5]
which aims at maximizing the Rayleigh quotient of the covari-
ance matrix of the data using non-convex optimization, the
DSPCA algorithm [6] which solves a convex relaxation of
the sparse PCA problem, the low rank matrix approximation
method with sparsity constraint [7], Sparse PCA with pos-
itivity constraints [8] and the generalized power method [9].
In these methods, the computation of each basis vector is dealt
as an independent problem, the basis vectors are individually
sparse but may not be jointly sparse.

Another aspect overlooked by Sparse PCA is the structure
of the data in terms of groups of features [10]. For example,
image pixels are organized on a rectangular grid exhibiting
connectivity and neighborhood relationships. Similarly, gene
expression data involves groups of genes corresponding to the
same biological processes or sets of genes which are functional
neighbors. It is sometimes desirable to encode such group
relationships in Sparse PCA so that sparsity follows the group
structure. Standard sparse solutions do not offer incorporation
of feature groups.

A rather obvious extension of the lasso formulation in
Sparse PCA to Group Sparse PCA is to introduce the group
lasso penalty [11], [12]. Group lasso uses the �1/�2 mixed vec-
tor norm to shrink all features in predefined groups with small
magnitudes to zero. Guo et al. [13] proposed Sparse Fused
PCA which derives group structures from feature correlation.
They augmented the Sparse PCA formulation [4] by an
additional penalty term which encouraged the coefficients of
highly correlated features to be similar and subsequently fused.
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However, their solution did not directly result in sparsity,
but only forced the coefficients to be of similar value which
may or may not be zero. Jenatton et al. [14] used the
non-convex �α/�2 quasi-norm (where α ∈ (0, 1)) for struc-
tured sparse PCA. Rectangular patterns were rotated to obtain
a larger set of convex patterns for group definition. They
demonstrated the use of structured sparsity in image denoising
and face recognition tasks. Grbovic et al. introduced two types
of grouping constraints into the Sparse PCA problem to ensure
reliability of the resulting groups [15]. Jacob et al. [16]
proposed a new penalty function which allowed potentially
overlapping groups, whereas, Huang et al. [10] generalized
the group sparsity to accommodate arbitrary structures.

While group sparsity accounts for the data structure, it does
not guarantee joint sparsity of the complete PCA basis with
respect to the input features. We present Joint Group Sparse
PCA (JGSPCA) which forces the basis coefficients corre-
sponding to a group of features to be jointly sparse. Joint spar-
sity allows to reconstruct the complete data from only a sparse
set of input features, whereas the group sparsity ensures that
the structure of the correlated features is preserved. An impor-
tant application of Sparse PCA and Group Sparse PCA is data
interpretation through dimensionality reduction. However, the
proposed Joint Group Sparse PCA (JGSPCA) can also be used
for model based compressed sensing. Classical compressed
sensing does not assume any prior model over the data and
is based on the restricted isometry property (see [17] and the
references therein). In other words, they are not learning based.
On the other hand, the proposed JGSPCA algorithm is learning
based and is closer to the model based compressive sensing
theory introduced by Baranuik [18].

We validate the proposed JGSPCA algorithm on the prob-
lem of compressed hyperspectral imaging and recognition.
A hyperspectral image is a data cube comprising two spatial
and one spectral dimension. Since the spectra of natural
objects are smooth, their variations can be approximated by a
few basis vectors [19]. Besides, there is a high correlation
among neighboring pixels in the spatial dimension. In a
compact representation of such data, structure needs to be
preserved in the spatial dimension, while sparsity is desirable
in the spectral dimension. Pixels from local spatial neighbor-
hood are grouped together, while sparsity is induced along
the spectral dimension. This redundancy in the data makes
hyperspectral images a good candidate for sparse representa-
tion [20] as well as compressed sensing [21]. We present a
Joint Group Sparse PCA algorithm in Section II. Description
of the experimental setup, evaluation protocol, and datasets
used in the experiments are given in Section III. The results of
compressed sensing and recognition experiments are presented
in Section IV. The paper is concluded in Section V.

II. JOINT GROUP SPARSE PCA

Notations: In the following text, a lowercase letter (x)
represents a scalar, a lowercase letter in bold font (x) rep-
resents a vector, and an uppercase letter in bold font (X) a
matrix. All vectors are treated as column vectors. xi is the i th

element of x. xi is the i th row and x j is the j th column of
a matrix. We use G to denote a set of integers. x�G gives a

sub-vector after indexing the vector x by the elements of G.
X�G is the submatrix obtained by indexing the columns of X by
the set G. Similarly X�G indexes the rows. The number of
elements in a set is returned by |G|.

Let X = [x1, x2, . . . , xn]ᵀ ∈ R
n×p be a data matrix which

comprises n observations xi ∈ R
p , where p is the number

of features. Assume that the sample mean x̄ ∈ R
p has been

subtracted from all n observations so that the rows of X are
centered. Generally, a PCA basis can be computed by singular
value decomposition of the data matrix.

X = USVᵀ (1)

where V ∈ R
p×p are the PCA basis vectors (loadings) and S is

a diagonal matrix of singular values. V is an orthonormal basis
such that vᵀ

i v j = 0 ∀ i �= j and vᵀ
i v j = 1 ∀ i = j . If X is low

rank, it is possible to significantly reduce its dimensionality by
using the k most significant basis vectors. The projection of
data X upon the first k basis vectors of V gives the principal
components (scores). An alternative formulation treats PCA as
a regression type optimization problem

min
A

‖X − XAAT ‖2
F

subject to AT A = Ik, (2)

where ‖.‖F is the Frobenius norm, A ∈ R
p×k is a matrix

whose columns form an orthonormal basis {α1,α2, . . . ,αk}.
The columns of A which minimize (2) are referred to as the
PCA basis V. Each principal component is derived from a
linear combination of all p features, consequently making α

non-sparse. In order to obtain a sparse PCA basis, a regulariza-
tion term is usually included in the regression formulation (2).
Inclusion of a sparse penalty reduces the number of features
involved in each linear combination for obtaining the principal
components. One way to obtain sparse basis vectors is by
imposing the �0 constraint upon the regression coefficients
(basis vectors) [4].

min
A,B

‖X − XBAT ‖2
F + λ

k∑

j=1

‖β j ‖0

subject to AT A = Ik, (3)

where B ∈ R
p×k corresponds to the required sparse basis

{β1,β2, . . . ,βk}. The �0-norm regularization term penalizes
the number of non-zero coefficients in β, whereas the
loss term simultaneously minimizes the reconstruction error
‖X − XBAT ‖2

F . If λ is zero, the problem reduces to finding
the ordinary PCA basis vectors, equivalent to (2). When
λ > 0, some coefficients of β j are forced to zero due to �0
penalization, resulting in sparsity as shown in Figure 1(a).

The above formulation allows us to individually determine
informative features. However, it may not account for the
structural relationship among multiple features. It is sometimes
desirable that the sparsity patterns in the computed basis be
consistent over a group of features. The group sparsity should
collectively improve the interpretation of the underlying
sources. To address this issue, we reconsider the problem from
the perspective of groups of features. The grouping of features
can either be known a priori from the domain information, or
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Fig. 1. This example illustrates the basis vectors (β j ) computed from a data (X) consisting of feature groups (Gi ) (g = 8, pi = 9, k = 7). Dark cells denote
the non-zero coefficients. The group sparsity applies across the groups of features in each basis vector, individually. The joint group sparsity ensures both
sparsity among the groups and joint selection of the groups across the basis vectors. (a) SPCA Basis. (b) GSPCA Basis. (c) JGSPCA Basis.

computed directly from the data by utilizing cross-correlation.
For instance, in image data, the information from region based
segmentation of image pixels could be used to form spatial
groups of features. Another possible approach for spatial
grouping of assorted pixels is to use dense keypoint based
feature correspondences. In general, a region grouping or
partitioning scheme may be used to compute a group structure.

Consider that the p features belong to g mutually exclusive
groups. Let Gi be the set of indices of features corresponding
to the i th group. The number of features in the i th group is
pi = |Gi | such that the total number of features p = ∑g

i=1 pi .
Hence, X can be considered a horizontal concatenation of g
sub-matrices [X�G1,X�G2, . . . ,X�Gg ]. Each X�Gi ∈ R

n×pi

contains data (columns of X) corresponding to the features
of the i th group. The group lasso regularization penalizes
�2-norm of the coefficients corresponding to a feature
group [11]. It enforces sparsity on a group of coefficients,
instead of individual coefficients. The group lasso constraint
can be incorporated into (3), to achieve the Group Sparse
PCA (GSPCA) criterion

min
A,B

‖X −
g∑

i=1

X�Gi B
�Gi AT ‖2

F + λ

k∑

j=1

g∑

i=1

ηi‖β�Gi
j ‖

2

subject to AᵀA = Ik , (4)

where ‖.‖2 is the Euclidean norm and ηi is the weight of the
i th group. B�Gi ∈ R

pi×k denotes the sub-matrix corresponding
to the i th group of features in B. The group lasso penalty∑g

i=1 ηi‖β�Gi ‖2 induces sparsity at the group level, i.e. if the
coefficients of the i th group are non-zero, the entire pi features
of the group will be selected and vice versa [12]. It is important
to note that the factor ηi will only affect the regularization
penalty for different sized groups (typically ηi = √

pi ). In the
case of equal sized groups, this factor can be ignored altogether
(or assumed ηi = 1).

Notice that the �0 penalty in (3) has been replaced with
an �2,1 penalty in (4). This formulation can be considered to
be a generalized form for group and non-group structured data.
A group may even consist of a single feature, if it is not highly
correlated with other features. Hence, in the extreme case of
uncorrelated data, each group will contain a single feature,
i.e. g = p.

Equation (4) gives a sparse basis which accounts for the
group structure of the data. When the grouping constraint is
enforced, the basis coefficients become sparse in a group-wise
manner. Imposing the additional group constraint generally
results in reduced sparsity within the feature groups. This
phenomenon is illustrated for an example basis in Figure 1.
Figure 1(a) depicts a sparse basis obtained by the
SPCA criterion (3) which does not take the group structure
into account. Figure 1(b) shows a group sparse basis obtained
by the GSPCA criterion (4) for the same data. Consider
for instance the null coefficients within the groups Gi of an
SPCA basis vector β j . As a consequence of enforcing the
grouping constraint, some of the coefficients that were null
in the SPCA basis within the groups become non-zero in
the GSPCA basis. Since the group sparsity is independently
achieved in the basis vectors, each vector is sparse for a
different group of features and the complete basis may still
end up using all groups of features.

In several applications, it is desirable to perform feature
selection such that the selected features explain the major
variation of the data. This is particularly true for data con-
sisting of a large number of redundant features, or where
measurement of features is expensive. To achieve this goal, we
expect all basis vectors β j to end up using the same groups of
features. This kind of sparsity is called joint sparsity [22], [23].
Joint sparsity is neither considered by SPCA nor GSPCA,
since they solve (3) and (4) for individual basis vectors β j .
We propose to directly optimize for B to ensure joint sparsity
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while simultaneously achieving group sparsity. In other words,
the coefficients corresponding to some groups of rows of B
are forced to be null, as shown in Figure 1(c). Our proposed
joint group sparsity can be obtained by imposing the following
regularization penalty

�Fg,1(B) =
g∑

i=1

ηi‖B�Gi ‖F . (5)

The �1 penalty on ‖B�Gi ‖F forces some of the sub-basis groups
B�Gi to be null. This results in joint group sparsity over the
complete basis. The nullified groups directly correspond to the
feature groups of X with minimum contribution in explaining
the data. By including the joint group sparse regularization
penalty (5) in (3), the proposed Joint Group Sparse PCA
criterion is obtained:

min
A,B

‖X −
g∑

i=1

X�Gi B
�Gi AT ‖2

F + λ

g∑

i=1

ηi‖B�Gi ‖F

subject to AT A = Ik . (6)

For sufficiently large values of λ, some group of rows
of B vanish, resulting in a joint group sparse basis.

Although, the above formulation ensures a joint group
sparse basis, simultaneous minimization for A and B makes
the problem non-convex. If one of the two matrices is known,
the problem becomes convex over the second unknown matrix.
Hence, a locally convex solution of (6) can be obtained by iter-
atively minimizing A and B. Therefore, the joint group sparse
PCA formulation in (6) is decomposed into two indepen-
dent optimization problems. In the first optimization problem,
A is initialized with V obtained from (1) and the minimization
under the joint group sparsity constraint on B is formulated as

min
B

‖XA − XB‖2
F + λ

g∑

i=1

ηi‖B�Gi ‖F . (7)

The loss term ‖X − ∑g
i=1 X�Gi B

�Gi AT ‖2
F in (6) is equivalent

to ‖XA − XB‖2
F in (7) given AT A = Ik , and

non-overlapping feature groups, Gi ∩ G j = ∅ ∀i �= j , so that∑g
i=1 X�Gi B

�Gi = XB. The above formulation is similar to a
multi-task regularized regression problem [24] with grouping
constraints

min
W

‖Q − XW‖2
F + ψ(W), (8)

where Q = XA is the response matrix, W = B is the matrix
of regression coefficients, and ψ is any convex norm defined
on the matrix. An optimization problem of the form of (8) can
be efficiently solved by proximal programming methods [25].

Once a solution for B is found via (7), the next step is
to solve the optimization with respect to A. For a known B,
the regularization penalty in (6) becomes irrelevant for the
optimization with respect to A. Therefore, the following objec-
tive function is minimized

min
A

‖X − XBAT ‖2
F

subject to AT A = Ik . (9)

Algorithm 1 Joint Group Sparse PCA

A closed form solution to (9) can be obtained as the general-
ized solution to the orthogonal Procrustes problem [26], [27].
For minimizing (9), the solution proceeds by finding the
nearest orthogonal matrix which maps XB to X. This is done
using Singular Value Decomposition, XᵀXB = U̇ṠV̇ᵀ. Then,
U̇V̇ᵀ is the nearest orthogonal matrix which minimizes (9).

The minimization process alternating between (7) and (9)
continues either until convergence, or until a specified number
of iterations are completed. Algorithm 1 summarizes the
proposed Joint Group Sparse PCA method.

A. Implementation

We used the Fast-Iterative Shrinkage and Thresholding
Algorithm (FISTA) library [25] to solve the optimization
problems in (3), (4) and (6). Note that we modified the FISTA
library to solve for the �Fg,1 joint group regularization penalty
in (5). All source codes for the algorithms in this paper
(including the modified FISTA library) are publicly available.1

III. EXPERIMENTS

A. Evaluation Criteria

The data matrix X is created by sampling non-overlapping
spatio-spectral volumes of dimension

√
pi × √

pi × g,
pi = 9 ∀ i (after vectorizing) from all training hyperspectral
images. A model is learned from the training data using
Algorithm 1. At most g models are learned with each algo-
rithm, one for each r = 1, 2, . . . , g number of bands, where
r is defined as the feature group cardinality

r = |{i | ‖B�Gi ‖F,1 �= 0}|. (10)

To evaluate compressive sensing performance of the r th

learned model with orthonormal basis A and the corresponding

1http://www.sites.google.com/site/zohaibnet/Home/codes.html
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Fig. 2. Sample hyperspectral images in different datasets. Each image is shown as a series of bands in pseudo color and grayscale (only a subset of bands
is shown here). Also shown are their corresponding RGB rendered images. (a) Harvard Data. (b) CAVE Data. (c) CMU Data. (d) UWA Data.

TABLE I

AN OVERVIEW OF HYPERSPECTRAL IMAGE DATABASES USED IN THE EXPERIMENTS. OUR NEWLY DEVELOPED UWA FACE DATABASE

IS A LOW NOISE HYPERSPECTRAL FACE DATABASE IN THE VISIBLE RANGE

sparse basis B, the reconstruction error is computed as

er =
‖XV�{1:k}Vᵀ

�{1:k} − XBAT ‖
F

‖XV�{1:k}Vᵀ
�{1:k}‖F

(11)

where k is the number of basis vectors. The fraction of
variance ν ∈ (0,1) explained by the first k basis vectors
determines the number of principal components in a model

arg min
k

∑k
i=1 �i∑
�

− ν, (12)

where � = diag(S)2

N−1 is a vector of the principal component
variances arranged in descending order. A common practice
is to use ν = 0.9. It should be noted that sparse PCA variants
have the intrinsic ability to determine the extent to which a
principal component is used, which is determined by the values
of the basis coefficients. Due to the optimization criterion
(minimizing reconstruction error), the less informative princi-
pal components will automatically have very small coefficients
corresponding to their basis vectors, effectively reducing their
contribution to the reconstruction of the data.

B. Databases

We perform compressed sensing experiments on four hyper-
spectral image databases. These hyperspectral images were
acquired by sequentially tuning a filter through the spectrum
and capturing image with a monochrome camera. A sample
image from each dataset is shown in Figure 2. All images
were downsampled using bilinear interpolation. A summary
of specifications for all hyperspectral datasets used in the
experiments is provided in Table I. A brief description of each
database is as follows:

1) Harvard Scene Dataset: The dataset contains hyperspec-
tral images of 50 indoor and outdoor scenes under daylight
illumination [20]. The images were captured using a com-
mercial grade hyperspectral camera (Nuance FX, CRI Inc.),
which is based on a liquid crystal tunable filter design. The
dataset consists of a diverse range of objects, materials and
structures and is a good representative of real world spatio-
spectral interactions. The training and testing datasets consist
of 10 and 40 images, respectively. All images were spatially
resized to 105 × 141 pixels.

2) CAVE Scene Dataset: The CAVE multispectral image
database contains true spectral reflectance images of 32 scenes
consisting of a variety of objects in an indoor setup [28].
It has 31 band hyperspectral images (420-720nm, spaced 10nm
apart) at a resolution of 512 × 512 pixels. All images contain
the true spectral reflectance of a scene i.e., they are corrected
for ambient illumination. We used 10 images for training
and 22 images for testing. Each band was spatially resized
to 120 × 120 pixels.

3) CMU Face Dataset: The CMU hyperspectral face data-
base [29] contains facial images of 48 subjects captured
in multiple sessions over a period of about two months.
The images cover both visible and near infrared spectral
range (450nm to 1090nm, spaced 10nm apart). The data
was obtained using a prototype spectro-polarimetric camera
mainly comprising of an Acousto Optical Tunable Filter. For
experiments, a single sample per subject is used for training
and the remaining samples make the test set. Specifically,
48 samples were used for training and 103 for testing. All faces
were spatially resized to 24 × 21 pixels after normalization.

4) UWA Face Dataset: The hyperspectral face database
collected in our lab comprises 110 hyperspectral images
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of 70 subjects of different ethnicity, gender and age. Each
subject was imaged in different sessions, one week to
two months apart. The system consists of a monochrome
machine vision camera with a focusing lens (1:1.4/25mm)
followed by a Liquid Crystal Tunable Filter (LCTF) which
is tunable in the range of 400-720 nm. The average tuning
time of the filter is 50 ms. The filter bandwidth, measured
in terms of the Full Width at Half Maximum (FWHM) is
7 to 20nm which varies with the center wavelength. The scene
was illuminated by twin-halogen lamps on both sides of the
subject. The illumination was left partially uncontrolled as
it was mixed with indoor lights and occasionally daylight,
varying with the time of image capture. For spectral response
calibration, the white patch from a standard 24 patch color
checker was utilized.

The training and testing sets consist of 70 and 40 images,
respectively. The database has been made publicly available
for research.2

IV. RESULTS AND DISCUSSION

A. Compressed Hyperspectral Imaging

In the first experiment, we examine the compressive sensing
performance of all algorithms (SPCA, GSPCA and JGSPCA)
in terms of reconstruction error. In the following text, feature
refers to the band of a hyperspectral image. When the number
of bands in a model increases, the reconstruction error should
decrease. However, an attempt to reconstruct a band that
is highly corrupted by noise may result in an increased
reconstruction error. Therefore, it is important for a method to
select bands that are most informative for the representation
of the data. An algorithm is expected to be relatively better
for compressed sensing if it achieves a lower reconstruction
error with fewer bands.

The reconstruction error on the test data with different
algorithms is provided in Figure 3. Interesting results are
obtained for the reconstruction errors on the Harvard and
CAVE scene datasets. The first few bands similarly explain
the data with either SPCA or GSPCA. When more bands
are added into the model, significant improvement in the
reconstruction error is achieved with JGSPCA. We observe
that GSPCA alone is only slightly better than SPCA, whereas
the JGSPCA consistently achieves lower reconstruction error
and outperforms both SPCA and GSPCA. The results on
hyperspectral face datasets are slightly different from the
scenes datasets. The JGSPCA consistently outperforms SPCA
and GSPCA on both CMU and UWA datasets. It reconstructs
the data with lower error from the first band up until the last
band on both databases.

It is important to note that, in some cases, the reconstruction
errors are similar regardless of the type of sparsity. Thus,
if similar bands are selected, the reconstruction error using
those bands may be similar as well. Beyond the first few
bands, the proposed JGSPCA is able to identify and select
the most informative bands earlier than the other algorithms
and hence results in lower reconstruction errors. For instance,

2UWA Hyperspectral Face Database
http://www.sites.google.com/site/zohaibnet/Home/databases

Fig. 3. Reconstruction errors (er ) on Harvard, CAVE, CMU and UWA
datasets. The smooth curves are the result of fitting multiple linear regression
model with methods as categorical variables. In all instances, the p-value of
the interaction term with the method JGSPCA is less than the common alpha
level of 0.05, which proves its statistical significance.

TABLE II

THE NUMBER OF BANDS REQUIRED TO ACHIEVE A SPECIFIC

RECONSTRUCTION ERROR. LOWER NUMBER OF BANDS

INDICATES THE SUPERIORITY OF A METHOD IN

DELIVERING A LINEAR COMBINATION

OF INFORMATIVE BANDS

the reconstruction error curves on CMU dataset suggest that
crucial bands are selected by JGSPCA when the number of
bands is increased from 1 to 30 which is illustrated by a
steep drop in er down to 15%. To reach the same level of er ,
GSPCA and SPCA require 49 and 56 bands, respectively.

The overall trend of reconstruction errors is also related
to the variety of objects, and the number of samples used
for training in each database. It is difficult to model spatio-
spectral variation of complex objects (such as those in the
CAVE database) with a few bands and limited training data.
On the other hand, faces are a particular class of objects and
can be reconstructed by only a few bands. Moreover, because
the image noise is not modeled, it is highly unlikely to achieve
zero reconstruction error, which is in turn a benefit of sparse
modeling techniques.

Table II provides the number of bands required by a
model to limit the reconstruction error within an upper bound.
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Fig. 4. Compressed sensing results of hyperspectral images (rendered as RGB). The results are shown for the same number of bands used for reconstruction
of the hyperspectral image using SPCA, GSPCA and JGSPCA. The original images are rendered using all bands of the hyperspectral images. The differences
are numerically and visually appreciable in all examples. (a) A building scene from the Harvard dataset. (b) A balloons scene from the CAVE dataset.
(c) A face image from the UWA dataset. (d) A face image from the CMU dataset.

As we are interested in achieving lowest reconstruction errors,
we restrict to 30%, 20% and 10% error marks. With a small
number of bands, the reconstruction error of the hyperspectral
data is too high. When more bands are added, JGSPCA selects
a fewer number of bands to achieve the same reconstruction
error as the SPCA and GSPCA. For low reconstruction errors,
all methods require a relatively higher number of bands,
whereas JGSPCA still requires comparatively fewer bands.
Figure 4 shows compressed sensing of four example images
using SPCA, GSPCA and JGSPCA methods. The proposed
JGSPCA exhibits significantly lower reconstruction errors
which can also be visually appreciated. The difference is more
obvious when using a small number of bands for compressed
sensing. Overall, JGSPCA performs the best in compressed
hyperspectral imaging, followed by GSPCA and SPCA.

B. Hyperspectral Face Recognition

In this experiment, we compare the compressive sensing
of hyperspectral images using different algorithms in the
context of a recognition task. We expect a compressive sensing
algorithm to achieve a high recognition accuracy while sensing
only a small number of bands. We evaluate our proposed
JGSPCA algorithm for band selection in hyperspectral face

recognition and compare it to SPCA and GSPCA. In order
to understand the purpose of this experiment, the following
points need due consideration

1) We use several widely accepted classification methods
to evaluate the trend of recognition accuracy against
compressive sensing of hyperspectral face images. Any
other state-of-the-art algorithm may perform better than
the chosen baseline algorithms, however the trend is
expected to be similar.

2) We assume that the bands that are informative for
class separation are the bands that are informative for
explanation of the data, which is the default criterion
in PCA. A discriminant criterion [30], [31] is expected
to adequately satisfy this assumption. A more attractive
approach could be to learn a model which maximizes
the covariance between hyperspectral bands and the
classes to separate. Partial Least Squares (PLS) Discrim-
inant Analysis can take into account class separation
without any further assumption about the variance or
covariance structure of the data as opposed to PCA.
It can potentially model the data from the perspective
of regression (numerical responses) or classification
(categorical responses), a direction worth exploring in
the future.
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Fig. 5. Recognition accuracy (ar ) versus the number of selected bands on CMU and UWA face datasets. The JGSPCA demonstrates consistently higher
recognition accuracy compared to SPCA and GSPCA.

TABLE III

THE NUMBER OF BANDS TO ACHIEVE A SPECIFIC RECOGNITION

ACCURACY. LOWER NUMBER OF BANDS INDICATES THE

SUPERIORITY OF A METHOD IN SELECTING

INFORMATIVE BANDS

A model is learned using a single hyperspectral image
per subject in the training set which makes the gallery. All
remaining hyperspectral images which comprise the test set,
serve as the probes. A test hyperspectral image cube is
compressively sensed (reconstructed by learned model) and
used for classification. Consider a training set X and test
set Z, where each row is a hyperspectral face image. The
compressive sensing performance of the r th learned model in
terms of recognition accuracy is computed as

ar = classify({A,B},X,Z), (13)

where the operator classify is a classification method
such as Nearest Neighbor (NN), EigenFaces [32], Support
Vector Machine (SVM) [33] or Sparse Representation-based
Classification (SRC) [34]. The recognition accuracies from
each algorithm are averaged over three folds.

Figure 5 shows the recognition accuracy against the number
of bands used for reconstruction of test hyperspectral images.
It can be easily observed that JGSPCA consistently achieves
higher recognition accuracy with fewer bands compared to
SPCA and GSPCA on both databases. The consistency of the
trend can be observed across different recognition algorithms.
In order to numerically analyze the recognition performance
through compressed sensing, we tabulate the number of bands
required to achieve a certain recognition accuracy mark.
In Table III, we are interested in achieving higher recognition
accuracies with small number of bands. It can be observed that
the proposed JGSPCA algorithm achieves higher recognition
accuracy by sensing only a few bands compared to SPCA and
GSPCA. This implicitly indicates the ability of JGSPCA to
select more informative bands for a recognition task.

V. CONCLUSION

In this paper, we presented a Joint Group Sparse
PCA algorithm which addresses the problem of finding a few
groups of features that jointly capture most of the variation
in the data. Unlike other sparse formulations of PCA, for
which all features might still be needed for reconstructing the
data, the presented approach requires only a few features to
represent the whole data. This property makes the presented
formulation most suitable for compressed sensing, in which the
main goal is to measure only a few features that capture most
significant information. The efficacy of our approach has been
demonstrated by experiments on several real-world datasets
of hyperspectral images. The results show that our presented
approach outperforms Sparse PCA and Group Sparse PCA
algorithms when applied to compressed hyperspectral imaging
and hyperspectral face recognition. The proposed methodology
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is well adaptable to scenarios where the features can be
implicitly or explicitly categorized into groups.
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