
Incremental Learning of Object Detector with
Limited Training Data

Muhammad Abdullah Hafeez, Adnan Ul-Hasan and Faisal Shafait
School of Electrical Engineering and Computer Science (SEECS)

National University of Sciences and Technology (NUST)
Islamabad, Pakistan

Deep Learning Laboratory, National Center of Artificial Intelligence (NCAI)
Islamabad, Pakistan

{mhafeez.mscs16seecs, adnan.ulhassan, faisal.shafait}@seecs.edu.pk

Abstract—State of the art Deep learning models, despite being
at par to the human level in some of the challenging tasks,
still suffer badly when they are put in the condition where
they have to learn with time. This open challenge problem
of making deep learning model learn with time is referred in
the literature as Lifelong Learning, Incremental Learning or
Continual Learning. In each increment, new classes/tasks are
introduced to the existing model and trained on them while
maintaining the accuracy of the previously learned classes/tasks.
But accuracy of the deep learning model on the previously
learned classes/tasks decreases with each increment. The main
reason behind this accuracy drop is catastrophic forgetting, an
inherent flaw in the deep learning models, where weights learned
during the past increments, get disturbed while learning the new
classes/tasks from new increment. Several approaches have been
proposed to mitigate or avoid this catastrophic forgetting, such as
the use of knowledge distillation, rehearsal over previous classes,
or dedicated paths for different increments, etc. In this work,
we have proposed a novel approach based on transfer learning
methodology, which uses a combination of pre-trained shared and
fixed network as a backbone, along with a dedicated network
extension in incremental setting for the learning of new tasks
incrementally. The results have shown that our approach has
better performance in two ways. First, our model has significantly
better overall incremental accuracy than that of the best in
class model in different incremental configurations. Second, our
approach achieves better results while maintaining properties of
true incremental learning algorithm i.e. successful avoidance of
the catastrophic forgetting issue and complete eradication of the
need of saved exemplars or retraining phases, which are required
by the current state of the art model to maintain performance.

Index Terms—Incremental Learning, Continual Learning,
Lifelong learning, Deep Learning, Transfer Learning.

I. INTRODUCTION

Currently, deep learning models have outperformed other
ML model families in various domains. In recent years, Deep
Learning (DL) models have advanced than any other family
of machine learning models. After the AlexNet [3] success
on dataset from ILSVRC-2010, and iLSVRC-2012 [4] many
state of the art deep learning architectures like Resnet [5],
GoogleNet [6], Inception [7], and Densenet [8], have been
proposed. These state of the art architectures has performed ex-
tremely well on a vast variety of datasets in different domains
like Image recognition, Object detection, Object recognition,

Natural Language Processing, etc. Deep learning models have
even surpassed humans in performance in specific settings.

Despite being outperforming and powerful models, their
design has some limitations. Most prominent is that data used
for training a DL model must be available right at the time
of training. But in real-world, it is not always possible to
have all the training data available during the training phase.
This raises the requirement of DL models to a must-have
feature of able to expand their knowledge with the passage of
time incrementally i.e. when the new learning data becomes
available. Class/Task Incremental learning model, thus is a
model capable of extending its knowledge with the passage of
time by learning new classes/tasks, i.e., when the training data
of new classes/tasks become available to the model, without
effecting its performance on previously learned classes/tasks.
See the Figure 1. Characteristics of Incremental learning model
will be discussed later in this section. Challenges involved
in designing DL models capable of incrementally learning
with time had been studied since the early 90s. Although DL
models are very flexible in design from one perspective (plastic
nature of ANNs) but there are some inherent issues with their
design that makes it difficult to work around and make them
fully incremental learning models.

One of the main issues for DL models to have true in-
cremental learning capability is Catastrophic Forgetting. By
design DL models have learn-able parameters called weights.
These weights are learned (adjusted) iteratively during the
training phase. These learned weights collectively depict the
approximation of function that the model has learned during
the training phase. Therefore in the incremental setting when
the new data becomes available to the model, it tries to learn
on newly available data. Where in this training process, the
weights of the models adjust themselves (plastic nature of
weights) according to this new data and hence the adjustment
of weights for the previously learned data (stability of weights)
gets disturbed. As a result model performance on the previ-
ously learned tasks/classes starts to degrade while learning
the new ones. This issue of adjustment of weights again and
again for each new increment and resulting in degradation
of performance over previous classes/tasks is referred as



Fig. 1: General schematic of Incremental learning algorithm:
Where model learns new classes as introduced with the
passage of time, and can classify all the classes trained so
far.

Catastrophic Forgetting/Interference [30], [31]. Whereas in DL
models, this balance between plasticity (ability to learn new
tasks/classes) and stability (ability to retain the performance on
the old tasks/classes) is called the stability-plasticity dilemma.

Formally, for a DL-model to be classified as true Incremen-
tal learning model, we seek following characteristics to be met
by the model. I. Model should be resistant to Catastrophic
Forgetting, so that it’s performance on the previously learned
classes should not degrade at all or at least retain substantially.
II. Ideally model should be independent of rehearsal phases,
i.e., model should not require any retraining over that past
learned classes/tasks data for a persistence performance in
the incremental setting. III. Model design should be capa-
ble to keep on learning and be able to accommodate new
classes/tasks with the passage of time i.e. there should be no
upper bound for the increment number up to where increments
can be added. IV. As the classes/tasks are added to the model,
its size increases due to addition of new connections. But
model-size growth rate must be very low per increment.

Organization this paper is as follows: Section II discusses
the related work done. Section III explains the methodology
and its working pipelines in detail. In Section IV, results
from our proposed model are reported on CIFAR-100 dataset
in four different incremental configurations and showed the
improvements over the best in class strategies. In the last in
Section V, we conclude our work, with the limitations of work
and future work directions.

II. RELATED WORK

Incremental Learning is a long-standing challenge in the
field of Machine Learning [32] [33], [34]. Many approaches
have been devised to achieve true incremental learning capa-
bility, both in domain of Deep Learning models as well as
in other Machine Learning models. Here we discuss, some

prominent strategies under the similarities in their design
philosophies.

A. Retraining phase

One design philosophy used in incremental learning models
is the use of “Retraining Phase”. Where, during the training
phase of a new task, some part of the previous tasks’ training
data is also used with the training data of the new task.
In this regard, some mechanism is devised to select some
part of the training data form previously trained classes to
approximate the their distribution. In iCaRL [9], they used
herding technique from [10], to get the best exemplars for
the retraining phase. Herding was used in order to achieve
two objectives: first, to make exemplars set to exhibit true
class means approximation at the initial stage, second, herding
algorithm could remove exemplars when necessary while
keeping the approximation as close as possible, thus usage
of disk space for saving the exemplars was kept constant.

Another approach for the retraining phase was the use of
Generative adversarial networks [11], [12]. In this setting
training data of old classes were generated with the use
of generator of the generative adversarial network and thus
augmented with the training data for the new increment. In
[13] they used the combination of generator and solver, making
a complete model for the current state. On new increment, the
generator and solver of old scholar generated pseudo training
samples for old data and their labels respectively, which were
then combined with the data and labels for new classes to train
the new scholar. The advantage of this generative adversarial
network-based retraining approach is retaining the accuracy
over the old classes along with learning the new classes while
eliminating the requirement of saving old classes’ data on disk.

Limitation of this method is that generator has difficulty
in generating visually complex dataset classes like CIFAR100
[14], CUBs200 [15], ImageNet [4] etc, as mentioned in [16].
Therefore performance drops when generator based architec-
ture is put to test with such datasets. This results in limiting
its application over the visually complex datasets.

B. Expansion of Network

In incremental setting, every time in each new increment,
model is further trained on some specific number of new
classes. Which requires the addition of output nodes in the
output layer of the network. Therefore, in iCaRL [17] when
new nodes are added to the network, a new set of weights
making the connection between output and last hidden layer
are also added

In Learning without forgetting [18], they used the task in-
cremental strategy instead of class incremental strategy. Where
their network was divided into two categories depending on
the parameters’ access to the specific task. One is a shared
part of the network that has shared parameters θs across all
tasks, another part is network extension with parameters θn
which was added on the introduction of a new task. While at
the same level of θn, parameters of network extensions added
for old tasks during previous increments, were referred as θo.



Therefore, it is inevitable that an incremental model will be
extended every time a new increment is added to the model.

C. Distillation loss

During the training phase of the new increment, the retrain-
ing part is required. Where some mechanism of loss calcula-
tion over the previous training dataset becomes necessary, in
order to maintain some balance between the training quality
of new classes and retaining the accuracy over old classes.
This is usually done using the changes in the loss calculation
method in the loss function for the model. In [17] they used
the loss function as the combination of two-loss functions:
classification loss and distillation loss. The latter term was
used to prevent Catastrophic Forgetting by using the variation
of loss function used in [16]. The equation used by [17] for
the calculation of loss during training was originally proposed
for the information transfer between neural networks in [35].
But in [17] it was used in different time stamps in the same
neural network.

The same technique of Distillation loss proposed in [35],
was used by [18] for the retention of accuracy over the old
tasks after the addition of a new task. But in [18] they used it
for task incremental scenario rather class incremental scenario
as used in [17].

D. Nearest Class Mean Classifier

In [19], it was exhibited that the nearest-class-mean classi-
fier can incrementally accommodate new classes, by keeping
the mean of feature vectors of all examples form all classes.
During the testing phase, the feature vector of test example was
classified with the label of mean-of-feature-vectors, which was
most similar on metric to feature vector of test example. This
proposed method exhibited to work well when applied in the
incremental learning scenario [19], [20], [17].

iCaRL [17] despite being Deep learning based architecture,
they did not used neural network based classification layer for
final classification. Instead, they used different family of ML-
algorithm for the classification purpose, along with the neural
network as the backbone of the whole algorithm. They used the
nearest-mean-of-exemplars as their classification algorithm.

The main idea of using this algorithm for classification was
taken from the nearest class-mean classifier from [19]. The
difference between both implementations [17] and [19] is the
use of only feature representation of exemplars in [17], instead
of feature representation of whole data set examples as in [19].
This is due to the reason that they cannot have all the training
data stored for the above-mentioned purpose in the incremental
setting which will consume the disk space with time. Usage of
this algorithm in [17] made the classifier robust to changes in
feature representation, as class-prototypes could automatically
adjust themselves to changes in feature representation.

E. Subnetworks in Network

Inspired by pruning techniques in neural networks, and
redundancies in large deep learning models, PackNet [21]
proposed the method for learning of tasks with time in an

incremental manner, which is relatively different than all the
other models discussed here yet. They used the redundancies
of the deep learning model to their advantage and employed
weight-magnitude-based pruning methodology introduced in
(cite- A.Mallya 7,8) and freed up the excess parameters for
the learning of new tasks without the drop of performance in
any task learned. Using network retraining along with iterative
pruning they were able to make the model learn multiple tasks
with minimal drop in performance. Another major difference
from other tasks was that they always used to optimize for
the current (new) task, rather seeking a performance balance
between the new and old tasks’ learning using some proxy
loss functions.

The limitation of PackNet [21] is that it cannot keep on
adding new tasks with time, a property, a must have property
of a true incremental learning algorithm as mentioned in point
III in Section 1. This is due to the reason that after some
increments there will be no more room left for pruning in the
model thus model will reach to its limit and will not be able
to learn any further tasks afterward.

III. METHODOLOGY

The basic design of our proposed model is based on the
design philosophy of avoiding Catastrophic Forgetting in the
first place. In this way, a chain of issues involved with
m̈inimizing the effect of catastrophic forgetting” approach can
be avoided as well. For example in PackNet [21], they used the
similar design approach where catastrophic forgetting was not
an issue. Therefore, during the increment, they only focused
on optimizing for the task in hand, rather to worry about
retraining phases and all complexities involved along with that
phase.

In our work, complete proposed model can be divided into
the following three components:
• Base model: It is based on multiple layers of Convolu-

tional Neural Network (CNN) architecture working as the
backbone of the model.

• Network Extension (NE): It is the extension layer based
on CNN architecture, which is augmented at the end of
the network for incremental learning.

• Final classification: In this component of the model
fully connected layers from all network extensions are
combined to get the final classification.

A. Base model

The architecture backbone for our proposed model is one of
the state of the art deep learning model named ResNet34 [5]
with some modifications. ResNet34 architecture’s first layer is
a convolution layer followed by 32 bottleneck-blocks, while
the FC layer is at the end of last bottleneck-block for final
classification. These bottleneck-blocks are grouped together
and named as layer. Thus total of four groups of 6, 8, 12, and
6 bottleneck-blocks form these intermediate layers. ResNet34
has 3.6 billion FLOPS. In the proposed model here, we
have used the ResNet34 network per-trained on the ImageNet
[4] 1000-class dataset. This pretrained part of the network



will be shared across all increments and will remain fixed.
Therefore none of the training phase of any increment will
change the parameters of this shared part of the model. In the
proposed model, fully connected (FC) layer of the pretrained
ResNet34 is removed and network is extended with a block
of convolution layer and a fully connected layer of required
size on each increment.

B. Network Extension

In the proposed model, fully connected (FC) layer of the
pretrained ResNet34 is removed and network is extended
with a block of convolution and a fully connected layer of
required size on each increment. We call this additional block
as Network Extension (NE). The structure of the NE has
convolution layer of 960 input and 512 ouput channels, siz of
the kernel used is 3x3. Convolution layer is followed by batch
normalization layer and ReLU activation function respectively.
In the last fully connected (FC) layer is attached, which has
512 input neurons with a 0.5 dropout probability and output
neurons are equal to the number of classes in the current
increment. Softmax activation function is used on the final
output. When the training data is passed to the model, output
features from all four intermediate layers of the ResNet part
are taken in order to get all levels of features i.e. from high
level to low-level. Spatial size (height x width) of the outputs
from first, second, and third intermediate layers are 56x56,
28x28, and 14x14 respectively. These outputs are then resized
to 7x7 using downsampling method and then concatenated
with the output of the fourth intermediate layer which has
already output of size 7x7. This combined output of size
7x7x960 (height x width x number-of-feature-maps) from all
intermediate layers are then passed to the Network Extension.

Fig. 2: Architecture of Proposed model: Shared and fixed
layers of the model are taken from the pre-trained Resnet34.
While Network Extension part of the model has one dedicated
Convolutional and Fully connected layer, which are added for
each increment, during the training phase of the incremental
setting.

C. Final Classification

A fully connected layer in each network extension gives
output for all passed samples i.e. both in-distribution and out-
of-distribution samples. It was observed that, most of the time,
for same test sample, output logit value generated from its
relevant NE is relatively high than logit values generated from
all other irrelevant NEs. Therefore, the idea is to use these
logits produced for all samples from all the network extensions
and then stack them sample-wise and use the max function i.e.
torch.max() along the stacked dimension. Thus output of the
max function is used for final classification.

Fig. 3: Training pipeline of model: Two increments are shown
i.e. Base increment, first increment. Legend is in Fig 3.5

y′f = argmax
(
concat

[
y′i

]n
i=0

)
(1)

where:

y′i = logits of ith Network Extension (NE)
n = Total number of increments at specific time

stamp
concat() = concatenation function: concatenates logits

in specified dimension
argmax() = function to get the index of max-value in

specified dimension



Fig. 4: Testing pipeline of model: Combined testing for ‘n’
increments. Data passed is combined testing data set from all
‘n’ increments

D. Training phase

During the training phase, the shared part of the model
remains fixed as discussed previously. However, for each in-
crement right from zeroth increment (base increment), network
extension will be added for the increment under training.
While network extensions from all previous increments will
not be accessible to the training phase of current increment
i.e. their parameter will remain unchanged. Also NEs from
all previous increments will not participate in the training
phase of the current increment i.e. they will not participate
in the calculation of final logit value of current increment.
With this setting, the whole model will then be trained on the
dataset of the current increment only and will be optimized
for the current training dataset. No retraining or dataset from
old increments will be required at all in any future increment.
Parameters learned for previous increments will be saved on
the disk during training phase of current increment.

E. Testing phase

During the testing phase all NEs from all increments will
be active. Shared part of the model along with network
extensions from all the increments will be loaded to the model
in torch.eval() mode. Combined test data from all increments
will be passed at once to model in all the network extensions.
Each extension will make prediction for both in-distribution

and out-of-distribution examples. Prediction from all network
extensions will then be combined in the manner specified
priviouosly and final classification will be made using max
function over the stacked logits from all NEs.

IV. EXPERIMENTS

Incremental performance of the model, unlike single figure
performance measure, is usually evaluated in the incremental
manner, by oveserving the overall performance of the model
over the course of all increments. Therfore we have compared
the performance graphs in four different incremental config-
urations. This approach depite being a preferable evaluation
measure, we have also reported performance of our model
in terms of single performance value as Average Incremental
Accuracy as used in [7]. Here in this section we compare
and evalute our model with best in class and other strategies
under inter-model subsection. We also compare intra-model
configurations to get the insights on which component helped
in the performance improvement under intra-model subsection.

A. Inter-model comparisons

Accuracy comparisons were done in two settings: First use
of combined testing data from all increments i.e. all previous
and current increments at the time of testing, secondly the use
of separate testing data from all increments is used - at each
increment in the testing phase. Therefore for the combined
testing data, we compared results with state of the art iCaRL
[9], and baseline Lwf[11]. While the performance of the
proposed model on separate testing data for each increment,
results are compared with the results from PackNet[20].

Therefore for the testing incremental accuracy of our model,
we used the following four different incremental configura-
tions.
• Configuration-1, we used two increments, 50 unique

classes were introduced to the model in each increment.
• Configuration-2, we used five increments, , 20 unique

classes were introduced to the model in each increment.
• Configuration-3, we used ten increments, , 10 unique

classes were introduced to the model in each increment.
• Configuration-4, we used 20 increments, five unique

classes were introduced to the model in each increment.
Results of the proposed model are compared with the state

of the art and other implementations are given in Figure 5

TABLE I: Average accuracy improvement over different in-
cremental configurations

Model-name →
batch size ↓

LwF iCaRL ours
(Densenet201
+ Single CNN)

ours
(Resnet34
+ SMNE)

5 classes 32.46 61.33 62.02 61.91
10 classes 44.33 64.00 67.87 68.62
20 classes 54.40 67.40 70.38 72.85
50 classes 64.25 68.50 69.625 74.91

From the confusion matrices Generally, true positive rates
for all classes are significantly higher than their respective
false negative and false positives. Learning of the model for
all classes from all increments is optimized.



Fig. 5: Accuracy of separate task in separate testing setting

The spread of predictions made by the model for each class
is uniformly distributed. The model is unbiased in retaining
the performance for all classes and increments

True positive rates in The Matrix where the number of
increments is less has generally higher true positive rates than
matrix where the number of increments is higher. Less incre-
ments have better overall performance than more increments,
although the total number of classes learned are the same.

Optimized Accuracy for each task. Due to the independent
NE for each task.

Accuracy of each task is sustained for all the succeeding
increments, at the point where it was during the training time.
Catastrophic forgetting is successfully avoided in the model.
Shared parameters are fixed. Therefore weights do not get
disturbed during the training phase of the new increment.

By design, the proposed model is capable of sustaining ac-
curacies for extended increments. Scale-able and demonstrated
sustained accuracies up to 20 increments whereas PackNet is
not scale-able and demonstrated for only 5 increments

B. Intra-model comparisons

1) Base models: The pre-trained model is used as a base
in the proposed model for general feature extraction and
was supposed to help in improving performance along with
avoiding catastrophic forgetting.

Experimentation showed that usage of a better pre-trained
model as a base, actually helped in improving the overall
performance.

As it gives better out of the box feature extractor, upon
which further training is based

TABLE II: top errors of different pre-trained models used as
base in proposed work

Base model Top-1 error Top-5 error
Resnet 18 30.24 10.92
Resnet 34 26.70 8.58
Densenet 201 22.80 6.43

2) Network extensions: In order to maximize the perfor-
mance output while keeping the network size at a minimum,
we used three different configurations as Network extension.
For all the network extension configurations base model was
fixed to Resnet-34 architecture and the incremental configu-
ration was batch of 5 classes for 20 increments. details of
network extensions are as follows:
• Single CNN layer: This layer was used at the end of

the last CNN layer of the base model. Where In and out
channels were 960 and 512 respectively. Batch normal-
ization was used. whereas ReLU is used as an activation
function

• Inception block: This layer was used at the end of the last
CNN layer of the base model. Inception v1 configuration
960, 96, 96, 256, 32, 96, 64 as In, 1x1, 1x1, 3x3, 1x1,
5x5, pool was used.

• Sequenced MobileNet Extensions (SMNEs): MobileNet
v1 configuration: Depth wise Conv and pointwise conv
block. Each block is added after each intermediate layer
Concatenated with the succeeding layer output Then
passed to the next block

TABLE III: Network Extensions comparisons

Network exten-
sion

parameters NE to
model ratio

NE size
reduction

Accuracy
improved

Single CNN 4,427,269 20.31 - -
Inception Block 529,157 2.42 88.02 % -1.7 %
SMNEs 446,565 2.05 89.91 % 2.34 %

C. Discussion

In the proposed work, as discussed in the Methodology
section, for the final classification, we have used the argmax
function over the stacked logits from all Network Extensions.
Factors involved in the success of this very simple and straight
forward method are as follows:

I First, argmax() function alone cannot be credited for
the performance improvement. The whole design of the
model itself, training, and the testing pipeline is actually
aiding argmax() function in achieving the presented
performance.

II In model design, shared parameters remain fixed for
all the increments. Therefore each increment utilizes
the shared parameters during training but cannot update
them during backpropagation.

III During the training phase, network extensions form all
previous increments are neither accessible nor involved
in the training process of the current increment.

IV Training data form previously trained classes are not
passed to the model except the current task’s own
training data.

V Training phase of the current task is totally independent
of all other tasks’ training. Therefore model training is
focused on the current task’s training to achieve the best
accuracy, rather keep accuracy balance between current
and old tasks.



Fig. 6: Incremental Accuracies in configuration 1, 2, 3 and 4 from right to left

Fig. 7: Confusion Matrix in configuration 1, 2, 3 and 4 from right to left

Fig. 8: Accuracy comparison with different base models

VI In each increment, the softmax() function is used. Which
keeps the loss to a minimum by keeping the relevant
logit value as high as possible while irrelevant logit
values to as low as possible.

Therefore, keeping in view of the above-mentioned points,
the training phase of new increment is completely independent:
in terms of parameters (point (II) and (III), in terms of
training data (point (IV)), and in terms of optimization (point
(V)). Being completely independent in the training phase and
usage of softmax() outputs in loss calculation result in a high
difference between relevant and non-relevant logits.

Therefore, during the testing phase when combined testing

Fig. 9: Accuracy comparison of different Network extensions

data from all tasks are passed to the model. Logit value from
relevant Network Extension for a relevant class is most of
the time higher than all other logit values produced from
other non-relevant Network extensions. Due to which argmax()
function over the stacked logit values performs significantly
better.

V. CONCLUSION

We have introduced the model for Incremental learning
which learns to classify the different classes as introduced
to the model in an incremental fashion with the passage of
time. Model architecture can be divided into three main parts:
(1) Pre-trained part which is shared and remains fixed across



all increments. (2) Network extension, trainable part of the
model only for relevant increment and is not accessible to
other increments in the training phase. It is added for each new
increment (3) During the testing phase, the argmax() function
is applied to the stacked logits from all Network Extensions.

Experiments performed on CIFAR-100 showed that the pro-
posed model can learn incrementally for an extended period of
time and outperformed best in the class model by a significant
margin without any requirement of retraining phase or saving
of old data, a characteristic property of an ideal incremental
learning model. This is achieved by designing the model on
the philosophy of avoiding rather minimizing the Catastrophic
forgetting.

Although the Proposed model has outperformed best in class
results while maintaining the properties of a true incremental
learning model. Still, the overall performance has a significant
improvement gap. In the future, we have plans to introduce
the Out-of-distribution techniques and employ the strategies
to minimize the Network extension size as well.

REFERENCES

[1] J. Fagot and R. Cook. Evidence for large long-term memory capacities
in baboons and pigeons and its implications for learning and the evo-
lution of cognition. Proceedings of the National Academy of Sciences,
103(46):17564-17567, 2006.

[2] W. Abraham and A. Robins. Memory retention the synaptic stability
versus plasticity dilemma. Trends in neurosciences, 28(2):73-78, 2005.

[3] A. Krizhevsky, I. Sutskever, and G. Hinton. Imagenet classification with
deep convolutional neural networks. In Advances in neural information
processing systems, pages 1097-1105, 2012.

[4] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z.
Huang, A. Karpathy, A. Khosla, M. Bernstein, A. C. Berg, and L. FeiFei.
ImageNet Large Scale Visual Recognition Challenge. International Jour-
nal of Computer Vision (IJCV), 115(3):211-252, 2015.

[5] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image
recognition. In Proceedings of the IEEE conference on computer vision
and pattern recognition, pages 770-778, 2016.

[6] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan,
V. Vanhoucke, and A. Rabinovich. Going deeper with convolutions. In
Proceedings of the IEEE conference on computer vision and pattern
recognition, pages 1-9, 2015.

[7] S. Ioffe and C. Szegedy. Batch normalization: Accelerating deep
network training by reducing internal covariate shift. arXiv preprint
arXiv:1502.03167, 2015.

[8] G. Huang, Z. Liu, L. van der Maaten, and K. Weinberger. Densely con-
nected convolutional networks. In The IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), July 2017.

[9] SA. Rebuffi, A. Kolesnikov, G. Sperl, and C. Lampert. icarl: Incremental
classifier and representation learning. In The IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), July 2017.

[10] M. Welling. Herding dynamical weights to learn. In Proceedings of
the 26th Annual International Conference on Machine Learning, pages
1121-1128, 2009.

[11] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley,
S. Ozair, A. Courville, and Y. Bengio. Generative adversarial nets.
In Z. Ghahramani, M. Welling, C. Cortes, N. D. Lawrence, and K.
Q. Weinberger, editors, Advances in Neural Information Processing
Systems 27, pages 2672-2680. Curran Associates, Inc., 2014.

[12] A. Radford, L. Metz, and S. Chintala. Unsupervised representation
learning with deep convolutional generative adversarial networks, 2015.

[13] H. Shin, J. Lee, J. Kim, and J. Kim. Continual learning with deep
generative replay. In I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach,
R. Fergus, S. Vishwanathan, and R. Garnett, editors, Advances in
Neural Information Processing Systems 30, pages 2990-2999. Curran
Associates, Inc., 2017.

[14] A. Krizhevsky, G. Hinton, et al. Learning multiple layers of features
from tiny images. 2009.

[15] P. Welinder, S. Branson, T. Mita, C. Wah, F. Schroff, S. Belongie, and
P. Perona. Caltech-UCSD Birds 200. Technical Report CNS-TR-2010-
001, California Institute of Technology, 2010.

[16] J. Kim, J. Kim, and N. Kwak. Stacknet: Stacking feature maps for
continual learning. In The IEEE/CVF Conference on Computer Vision
and Pattern Recognition (CVPR) Workshops, June 2020.

[17] M. Ristin, M. Guillaumin, J. Gall, and L. Van Gool. Incremental
learning of ncm forests for large-scale image classification. In The IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), June
2014.

[18] Z. Li and D. Hoiem. Learning without forgetting. IEEE transactions on
pattern analysis and machine intelligence, 40(12):2935-2947, 2017.

[19] T. Mensink, J. Verbeek, F. Perronnin, and G. Csurka. Metric learning
for large scale image classification: Generalizing to new classes at near-
zero cost. In A. Fitzgibbon, S. Lazebnik, P. Perona, Y. Sato, and C.
Schmid, editors, Computer Vision - ECCV 2012, pages 488-501, Berlin,
Heidelberg, 2012. Springer Berlin Heidelberg.

[20] T. Mensink, J. Verbeek, F. Perronnin, and G. Csurka. Distancebased
image classification: Generalizing to new classes at near-zero cost. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 35(11):2624-
2637, 2013.

[21] A. Mallya and S. Lazebnik. Packnet: Adding multiple tasks to a single
network by iterative pruning. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, pages 7765-7773, 2018.

[22] Y. Bengio, P. Simard, and P. Frasconi. Learning long-term dependencies
with gradient descent is difficult. IEEE Transactions on Neural Net-
works, 5(2):157-166, 1994.

[23] X. Glorot and Y. Bengio. Understanding the difficulty of training
deep feedforward neural networks. In Proceedings of the thirteenth
international conference on artificial intelligence and statistics, pages
249256, 2010.

[24] K. He, X. Zhang, S. Ren, and J. Sun. Identity mappings in deep residual
networks. In B. Leibe, J. Matas, N. Sebe, and M. Welling, editors,
Computer Vision - ECCV 2016, pages 630-645, Cham, 2016. Springer
International Publishing.

[25] G. Cybenko. ”Approximation by superpositions of a sigmoidal function.”
Mathematics of control, signals and systems 2.4 (1989): 303-314.

[26] BC. Csáji, Balázs Csanád. ”Approximation with artificial neural net-
works.” Faculty of Sciences, Etvs Lornd University, Hungary 24.48
(2001): 7.

[27] Alom, Md Zahangir, Tarek M. Taha, Chris Yakopcic, Stefan Westberg,
Paheding Sidike, Mst Shamima Nasrin, Mahmudul Hasan, Brian C.
Van Essen, Abdul AS Awwal, and Vijayan K. Asari. ”A state-of-the-
art survey on deep learning theory and architectures.” Electronics 8, no.
3 (2019): 292.

[28] Huang, Gao, Yu Sun, Zhuang Liu, Daniel Sedra, and Kilian Q. Wein-
berger. ”Deep networks with stochastic depth.” In European conference
on computer vision, pp. 646-661. Springer, Cham, 2016.

[29] Shams, S., Platania, R., Lee, K. and Park, S.J., 2017, June. Evaluation
of deep learning frameworks over different HPC architectures. In 2017
IEEE 37th International Conference on Distributed Computing Systems
(ICDCS) (pp. 1389-1396). IEEE.

[30] R. French. Catastrophic forgetting in connectionist networks. Trends in
cognitive sciences, 3(4):128-135, 1999.

[31] M. McCloskey and N. Cohen. Catastrophic interference in connectionist
networks: The sequential learning problem. In Psychology of learning
and motivation, volume 24, pages 109-165. Elsevier, 1989.

[32] Thrun, S., Mitchell, T. (1995). Lifelong robot learning. Robotics and
Autonomous Systems, 15, 25-46.

[33] Robins, A. V. (1993). CaTastrophic forgetting in neural networks: The
role of rehearsal mechanisms. In Proceedings of the first new zealand
international twostream conference on artificial neural networks and
expert systems. IEEE Computer Society Press.

[34] Robins, A. V. (1995). CaTastrophic forgetting, rehearsal and pseudore-
hearsal. Connection Science, 7(2), 123–146

[35] G. Hinton, O. Vinyals, and J. Dean. Distilling the knowledge in a neural
network. In NIPS Workshop, 2014.


