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Futuristic Greedy Approach to Sparse
Unmixing of Hyperspectral Data
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Abstract—Spectra measured at a single pixel of a remotely
sensed hyperspectral image is usually a mixture of multiple spec-
tral signatures (endmembers) corresponding to different materials
on the ground. Sparse unmixing assumes that a mixed pixel is
a sparse linear combination of different spectra already avail-
able in a spectral library. It uses sparse approximation (SA)
techniques to solve the hyperspectral unmixing problem. Among
these techniques, greedy algorithms suite well to sparse unmix-
ing. However, their accuracy is immensely compromised by the
high correlation of the spectra of different materials. This paper
proposes a novel greedy algorithm, called OMP-Star, that shows
robustness against the high correlation of spectral signatures. We
preprocess the signals with spectral derivatives before they are
used by the algorithm. To approximate the mixed pixel spectra, the
algorithm employs a futuristic greedy approach that, if necessary,
considers its future iterations before identifying an endmember.
We also extend OMP-Star to exploit the nonnegativity of spectral
mixing. Experiments on simulated and real hyperspectral data
show that the proposed algorithms outperform the state-of-the-art
greedy algorithms. Moreover, the proposed approach achieves re-
sults comparable to convex relaxation-based SA techniques, while
maintaining the advantages of greedy approaches.

Index Terms—Greedy algorithm, hyperspectral unmixing, or-
thogonal matching pursuit (OMP), sparse unmixing.

I. INTRODUCTION

YPERSPECTRAL remote sensing extracts information

from the scenes on the Earth’s surface, using the radiance
measured by airborne or spaceborne sensors [1], [2]. These
sensors measure the spectra of the Earth’s surface at hundreds
of contiguous narrow bands [3], resulting in a hyperspectral
data cube that has two spatial and one spectral dimension (see
Fig. 1). Each pixel of such a data cube is a vector that represents
the spectral signature of the objects/materials measured at the
pixel. Due to low spatial resolution of sensors, presence of
intimate mixtures of materials, and multiple scattering, the
signature of the pixel is usually a combination of several pure
spectral signatures. Each of these pure spectral signatures is
called an endmember. Hyperspectral unmixing aims at extract-
ing these endmembers and their fractional abundances (i.e.,
proportion of the endmembers in a pixel), one set per pixel [4].
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Fig. 1. Illustration of hyperspectral data cube: The xy plane corresponds to
spatial dimensions. The spectral dimension shows the data collected at different
wavelengths. The cube is illustrated with only eleven spectral bands (out of
224). The data are taken over Cuprite mines, Nevada, by AVIRIS [29].

In recent years, linear unmixing of hyperspectral data has
attracted significant interest of researchers [1]. Linear unmixing
assumes that mixed spectra in a hyperspectral data cube can
be expressed as a linear combination of the endmembers,
which are weighted by their fractional abundances. Many works
under this model have exploited the geometric properties of
the hyperspectral data (e.g., [S]-[8]). Such approaches exploit
the fact that the convex hull of pure endmembers in the data
forms a probability simplex. Thus, finding the endmembers
amounts to finding the vertices of the simplex [9], [10]. Most
of the classical geometrical methods for unmixing assume the
presence of at least one pure pixel for every material captured
in the scene. Vertex component analysis [12], pixel purity
index [17], simplex growing algorithm [7], successive volume
maximization [13], N-FINDER [14], iterative error analysis
[15], and recursive algorithm for separable nonnegative matrix
factorization [16] are popular examples of such methods.

The assumption of the existence of pure spectra in a hyper-
spectral data cube is not a practical one. Therefore, techniques,
such as minimum volume simplex analysis [18], minimum vol-
ume transform-nonnegative matrix factorization [19], iterative
constrained endmembers (ICE) [20], and sparsity-promoting
ICE [21], have been proposed to circumvent the problem
by generating pure endmembers from the hyperspectral data
themselves. However, these techniques are likely to fail in
highly mixed scenarios, where the algorithms end up gen-
erating artificial endmembers that cannot be associated with
the spectral signatures of true materials [22]. For such cases,
hyperspectral unmixing is usually formulated as a statistical
inferencing problem, and the Bayesian paradigm becomes the
common choice [1]. Under this paradigm, the computational
complexity of Bayesian inferencing becomes a bottleneck for
effective hyperspectral unmixing.
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In order to overcome the aforementioned issues, hyperspec-
tral unmixing has recently been approached in a semisupervised
fashion [11]. This approach formulates hyperspectral unmixing
as a sparse approximation (SA) problem and aims at develop-
ing efficient and accurate SA algorithms for sparse unmixing.
Sparse unmixing makes use of a library of pure spectra and
finds the optimal subset from the library that can best model
the mixed pixel [4]. lordache et al. [11] have studied different
SA algorithms for sparse unmixing of hyperspectral data, in-
cluding orthogonal matching pursuit (OMP) [23], basis pursuit
(BP) [24], BP denoising (BPDN) [24] and iterative spectral
mixture analysis [25]. Recently, the authors have also exploited
the spatial information [27] and the subspace nature [26] of
the hyperspectral data in sparse unmixing. Previous works in
sparse unmixing have mainly focused on SA algorithms that
are based on convex relaxation of the problem. Generally, the
SA algorithms based on the greedy approach [23] have lower
computational complexity than their convex relaxation counter-
parts [31], [32]. These algorithms find approximate solution for
the [y problem directly, without smoothing the penalty function
[32]. Furthermore, the greedy algorithms admit to simpler and
faster implementation [45]. However, lordache et al. [11] have
shown that, in comparison to the convex relaxation algorithms,
the accuracy of the greedy algorithms (e.g., OMP) is adversely
affected by the high correlation between the spectra of the pure
materials.

Shi et al. [32] have strongly argued to exploit the poten-
tial of the greedy approach for sparse unmixing and propose
a greedy algorithm, which is called simultaneous matching
pursuit (SMP). This algorithm processes the data, in terms of
spatial blocks, and exploits the contextual information in the
data to mitigate the problems caused by the high correlation
among the spectra. However, the block size becomes an impor-
tant parameter for SMP that is specific to hyperspectral data
cube. Furthermore, the work assumes the existence of only a
few endmembers in the whole data cube and the presence of
spatial information everywhere in the data. Since hyperspectral
unmixing is primarily a pixel-based process, we favor pixel-
based greedy algorithms for sparse unmixing. These algorithms
do not assume the existence of contextual information in the
data. However, they can always be enhanced to take advantage
of the contextual information following the guidelines in [47].

In this paper, we propose a greedy algorithm for sparse
unmixing, which is called OMP-Star. OMP-Star is a pixel-
based algorithm that augments OMP’s greedy pursuit strategy
with a futuristic heuristic. This heuristic is inspired by a popular
search algorithm, which is called A-Star [43]. OMP-Star shows
robustness against the problems caused by the high correla-
tion among the spectra, while maintaining the advantages of
greedy algorithms. We further modify the proposed algorithm,
such that it takes advantage of the nonnegative nature of the
fractional abundances. This constrained version of the proposed
algorithm is called OMP-Star+. The second contribution of this
paper is that it exploits derivatives [46] of hyperspectral data
for sparse unmixing with greedy algorithms. It is possible to
reduce the correlation among spectral signatures by taking their
derivatives [48], [49]. Therefore, we preprocess hyperspectral
data with derivatives for all the greedy algorithms. Although
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preprocessing the data reduces the correlation among the spec-
tra, the reduction is generally not sufficient to achieve accurate
results using the greedy algorithms. Therefore, a greedy algo-
rithm with robustness against high signal correlation remains
desirable for hyperspectral unmixing. This paper also makes a
minor theoretical contribution to sparse unmixing by deriving
the condition for spectral libraries, which ensures that the non-
negativity of fractional abundances automatically constrains
their sum to constant values. This is important because once
a spectral library is processed to satisfy this condition, we do
not need to explicitly impose the aforementioned constraint,
which must be satisfied by the computed fractional abundances.
We test the proposed approach thoroughly on simulated and
real hyperspectral data. The results show that the proposed
algorithms show better performance than the existing greedy al-
gorithms. Furthermore, the proposed approach achieves results
comparable to the convex relaxation-based SA algorithms, with
a considerable computational advantage.

This paper is organized as follows. Section II formu-
lates hyperspectral unmixing as an SA problem and presents
the aforementioned theoretical contribution of this paper. In
Section III, we review the important greedy algorithms for
SA. Section IV presents the proposed algorithms. We study
derivatives for sparse unmixing in Section V. The proposed
algorithms are evaluated with synthetic data in Section VI and
with real data in Section VII. The computational complexity
analysis of the proposed algorithms is presented in Section VIII.
We draw conclusions in Section IX.

II. HYPERSPECTRAL UNMIXING AS SA
A. Linear Mixing Model

Hyperspectral unmixing as an SA problem focuses on a lin-
ear mixing model (LMM). The LMM assumes that the spectral
response at a band in the mixed pixel is a linear combination
of the constituent endmembers at that band. Written mathemat-
ically, we have

p
Yi = le’jaj + € (D
j=1

where y; is the spectral reflectance measured at the ¢th band, p
is the total number of endmembers in the mixed pixel, /;; is the
reflectance of the jth endmember at band i, «; is the fractional
abundance of the corresponding endmember, and ¢; is the noise
affecting the measurement. Assuming that the hyperspectral
data cube is acquired by a sensor with m spectral channels, the
LMM can be written in a matrix form

y=La+e 2)

where y € R™ represents the measured reflectance at a pixel,
L € R™*P is a matrix containing the endmembers, o € RP
is a vector with fractional abundances of the corresponding
endmembers, and € € R™ represents noise.

In the LMM, fractional abundances of the endmembers must
satisfy two constraints [1], i.e., 1) ANC: Abundance Non-
negativity Constraint (¥;,1 € {1,...,p},a; > 0) and 2) ASC:
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Abundance Sum-to-one Constraint (3 7_, a; = 1). These con-
straints owe to the fact that the fractional abundances of the
endmembers are nonnegative quantities that sum up to 1 for
each pixel

B. Sparse Unmixing

Let us denote a spectral library by a matrix D € R™*F (k >m),
with each column d; € R™ representing the spectral signature
of a pure material. Under the assumption that D includes all
the endmembers of a pixel, the signal y at the pixel can be
reconstructed as

y=Da+e€ 3)

where o € R¥ has only p nonzero elements (p < k). Without
considering the aforementioned constraints over the fractional
abundances, sparse unmixing is formulated as the following
energy optimization problem:

(Fg): minflallo st [Da-ylla<n 4
where ||.||o is the lp-pseudonorm that simply counts the number
of nonzero elements in c, and 7 is the tolerance due to noise
and modeling error.

(Py') is generally an NP-hard problem [30], and in practice,
it is usually solved with the greedy SA algorithms (e.g., OMP)
or by convexification of the problem (e.g., BP). In sparse
unmixing, the support of the solution o denotes the indexes
of the endmembers in the spectral library D. Note that the
goal of hyperspectral unmixing is to find 1) the correct set of
endmembers and 2) their corresponding fractional abundances.
This is different from the goal of high-fidelity SA of y using D.
In fact, with similar spectral signatures in D, a good solution to
the latter may be practically useless for the former.

Introducing the ANC in (P]) gives us the following
formulation:

(PSH') : ngn laflo st [Da—ylla<n, «a>0 (5
(PJ™") is constrained by ANC and not by ASC. Previous works
in sparse unmixing (e.g., [11] and [32]) state that imposing
ANC in sparse unmixing automatically imposes a general ver-
sion of ASC on the problem. This may not always be the case;
however, if D is normalized in [;-norm, then the statement
is true in general.! We augment this argument with analytical
results presented in Section II-C. The general version of ASC
implies, for a sparse unmixing solution a, ||a||; = ¢[11]. Here,
||l.]l1 represents the I;-norm of the vector, and ¢ is a pixel-
dependent scale factor. The generalized ASC simply becomes
ASC when c = 1.

Minimization of the [y-pseudonorm of « is generally per-
formed with greedy SA algorithms. Relaxed convexification of

Here, we do not claim incorrectness of the previous works, but we empha-
size the importance of normalization. Using D without normalizing the spectra
may not automatically guarantee the imposition of the generalized ASC along
with ANC. This fact has not been stated clearly in the previous literature related
to sparse unmixing.

2159

this minimization problem has also been widely researched.
With relaxed convexification, the sparse unmixing problem can
be rewritten as

(P [Da—ylla <1, a>0 (6)

min ||ee||; st
[

(P"") is more tractable than (PJ'") because of the convex
nature of [y-norm [33]. In the context of sparse unmixing,
Constraint Spectral Unmixing by variable Splitting and Aug-
mented Langrangian (CSUnSAL) [34] is a popular algorithm
for solving (P}'*). CSUnSAL exploits the Alternating Direc-
tion Method of Multipliers (ADMM) presented in [35], and it
is tailored for hyperspectral unmixing.

If we neglect the ANC in (P]'"), then the rest of the problem
is equivalent to the well-known least absolute shrinkage and se-
lection operator (LASSO) [36] problem, given below as (P}).
Of course, we need an appropriate Langrangian multiplier A for
this equivalency. Hence

1
(P): min ]y = Dalla + Alla]). (7

Tordache et al. [11] used Sparse Unmixing by variable Splitting
and Augmented Langrangian (SUnSAL) [34] to solve (P})
for hyperspectral unmixing. Similar to CSUnSAL, SUnSAL
exploits ADMM for sparse unmixing. Recent works [27],
[28] in sparse unmixing, focusing on convex relaxation of
the problem, have also exploited the piecewise smoothness of
fractional abundances in hyperspectral images. More specifi-
cally, they add a total variation regularizer in (P}’ +). Similarly,
Iordache et al. [26] have also made use of the subspace nature of
hyperspectral image for improved results via SUnSAL. In [26],
SUnSAL is extended to collaborative SUnSAL (CLSUnSAL)
that solves (P}\) under a structured SA framework.

C. Automatic Imposition of ASC With ANC

Theorem 1: For a given spectral library D € R™** if 3h > 0,
such that KD = (17 for [ > 0, then a € {y = D, > 0}
also satisfies || a||; = ¢, where h € R™*! 1 € R¥*L is a vector
of 1s, and c is a constant.

Proof: Consider the following model that admits to a
sparse solution:

Da=y, a>0. ®)

Given that D is a nonnegative matrix, Jh € R™*1 guch that

h"Da =hTy = v, h>0, v>0. 9)
Let us impose that a valid solution of (8) also satisfies ||a||1 =,
where ¢ > 0, then
n'a =, >0 (10)
where 1 € R¥*1 is a vector of 1s, and [ = v/c. From (9) and
(10), we arrive at
h'D =017,

1> 0. (11)
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We can reach (11) only under the assumption that ||a|; = c.
Hence, for a given D, if 3h such that (11) is satisfied, a solution
to (8) will also satisfy ||a|; = c.
Corollary 1: If d; represents the ith column of D and
IIdill, =1Vie{1,... .k},

[>0 (12)

then (11) is always satisfied by h = 1, where 1 € R™*! is a
vector of 1s.

Corollary 2: a) If the columns of D are normalized in
l1-norm, then ||a||; = ¢ = ||y||1, i-e., automatic imposition of
the generalized ASC due to ANC. Here, ||y||; is a pixel-
dependent scaling factor. b) If the columns of D are normalized
in /1-norm and scaled by ||y||1, then ||a|; = 1, i.e., automatic
imposition of ASC due to ANC.

The result in Corollary 2a follows from the reasoning: When
D is normalized in [;-norm, [ = 1 in (12). Therefore, (11) is
always satisfied by h = 1 and 17y = ||y||; = v according to
(9). This makes ¢ = v (since [ = v/c) and 1T = |||, = ¢
according to (10). Similarly, with [ = ||y||1 in (12), we finally
get |laf|; = ¢=1. Note that, for a hyperspectral unmixing
problem, generally Ah that satisfies (11). However, using the
aforementioned results, we can always process D to ensure
that the generalized ASC is automatically satisfied by a solu-
tion of (8). This processing requires simple [;-normalization
of the library according to Corollary 2. Previous works in
sparse unmixing have mentioned Elad’s results in [31] for
automatic imposition of generalized ASC due to ANC. The
aforementioned conclusions are in line with those results. The
Appendix shows how we can extend Elad’s results to arrive at
the conclusion in Corollary 2a. However, the analysis presented
here is more general, and the results shown here subsume those
in the Appendix.

III. GREEDY ALGORITHMS

Greedy algorithms provide a polynomial time approximation
of (Py) by iteratively selecting the columns of D that best
approximate y. We first discuss OMP [23] as the representative
algorithm, which is given in Algorithm 1. Each iteration of
OMP can be divided into three steps. In the first step, OMP
identifies the column in D that minimizes the residue of the
current approximation of y (identification), where y itself is
considered as the residual vector in the first iteration. The iden-
tified column is added to a selected subspace (augmentation).
Next, a new residual vector is computed by approximating y in
the column span of the selected subspace and subtracting this
approximation from y (residual update). The aforementioned
three steps are repeated until the stopping rule is satisfied.
OMP updates the residual vector by computing the least squares
approximation of y with the selected subspace, which makes
the updated residual vector orthogonal to the selected subspace.
Therefore, each newly identified column of D is different
from those already present in the selected subspace. OMP’s
procedure of residual update is an enhancement over the match-
ing pursuit (MP) algorithm [37] and also the reason why it
is called the Orthogonal MP. The MP algorithm updates the
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residual vector by simply deflating it with the recently identified
column of D.

Algorithm 1 OMP

Initialization:
1: Iteration: ¢ = 0
2: Initial solution: a® = 0
3: Initial residual: r° =y — Do’ =y
4: Selected support: S° = support{a®} =0
Main Iteration: Update iteration: ¢ = ¢ + 1
Identification
5:  Compute €(j) =min,_[d;z—r"! 12, Vie{l,... .k}
using the optimal choice 2} = dj r*~/||d; [
6:  Find a minimizer, jo of €(j) : Vj € St 1, €(jo) < €(j)
Augmentation:
7. S =8"1tu{jo}
Residual update:
8: Compute &' =min,, |[Da—yl3s.t. support{a’} =S8’
9: ri=y-Dal
Stopping rule:
10: I ||[r%||2 < €, stop. Otherwise iterate again.

Different enhancements over OMP have also been proposed
in the literature related to image and signal processing. A
nonnegative variant of OMP, henceforth denoted as OMP+,
is proposed in [31]. OMP+ differs from OMP mainly in the
residual update step, where the vector o' is constrained to have
only positive elements in line “8” of Algorithm 1. Wang e al.
[38] also proposed a generalized version of OMP, which is
called generalized OMP (gOMP). The difference between OMP
and gOMP is in the identification and augmentation steps.
Instead of identifying a single column of D, gOMP identifies L
columns in each iteration and augments the selected subspace
with all of these vectors. Here, L is an algorithm parameter.
Lookahead OMP (LAOMP) [39] is a variant of OMP that mod-
ifies the identification step. LAOMP also identifies L (a prefixed
number) columns in the identification step. Then, it picks one of
these vectors and temporarily augments the selected subspace
with it. It then proceeds similar to OMP until the stopping
rule is satisfied. At the end, it stores the leftover residue. This
procedure is repeated for all the L identified columns. LAOMP
then permanently augments the selected subspace with the
column that resulted in the least leftover residue, neglecting
the other L — 1 vectors. AxOMP [51] is another variant of
OMP that directly integrates the A-Star search [43] in OMP.
We defer further discussion on this approach to Section IV,
where we compare and contrast this approach with the proposed
algorithm.

Subspace pursuit (SP) [42], compressive sampling MP
(CoSaMP) [40], and regularized OMP (ROMP) [41] are the
greedy algorithms that assume prior knowledge of the cardi-
nality p of y. All of these algorithms identify multiple columns
of D in the identification step. In each iteration, SP identifies p
columns and augments the selected subspace with all of them.
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It then approximates y with the augmented subspace in the least
squares sense. Then, it selects the vectors of the augmented
subspace that correspond to the coefficients of the solution
with p largest magnitudes. These vectors compose the updated
selected subspace. Once the selected subspace is updated, SP
updates the residual vector similar to OMP. CoSaMP identifies
2p columns in each iteration and augments the selected sub-
space with all of them. Then, it selects p vectors similar to SP.
However, it updates the residual vector by using the already
computed coefficients of the selected p vectors. ROMP also
identifies p columns in each iteration. Then, it drops off some of
these vectors using a predefined regularization rule before the
augmentation step. In ROMP, the residual vector is also updated
following OMP. The algorithms mentioned in this paragraph
converge to solutions very quickly. However, the assumption of
prior knowledge of the mixed signal’s cardinality compromises
their practicality for sparse unmixing.

IV. PROPOSED ALGORITHMS

Here, we present the proposed greedy algorithm, which is
called OMP-Star.> A nonnegative variant of this algorithm
is developed later here. OMP-Star itself can be considered
a variant of OMP, with its abilities enhanced following an
approach inspired by A-Star [43], hence named OMP-Star.
Before giving a detailed account on the proposed algorithms, let
us briefly discuss the most significant drawback of the greedy
algorithms, i.e., the problem of getting stuck in local optima of
the solution space. This discussion will help in understanding
the intuition behind the better performance of the proposed
algorithms.

Consider the identification step of OMP, where it identifies
the column d;, of D, that minimizes the current residual.
Assume another column of D (dy : k # jy) that also causes
almost the same amount of reduction in the residual, but it is not
the minimum (because of d;, ). Being greedy, OMP prefers d,
over dj, for augmenting the selected subspace. Here, the ques-
tion arises, should we simply neglect d; and make the locally
optimal choice of d;,? What if, d;, was actually the right vector
to be picked but d;, got selected only because of its similarity
to di? Such locally optimal choices of greedy algorithms trap
them in local optima, i.e., a problem well researched for greedy
search algorithms in the artificial intelligence literature [44]. In
the context of greedy search algorithms, A-Star [43] is among
the most effective approaches to solve the problem of local
optimality of the solutions. The main idea behind this approach
is to make selections in the search procedure keeping in view
1) the current benefits and 2) the future benefits of making a
selection. This futuristic greedy approach helps in avoiding the
local optima.

A. OMP-Star
OMP-Star uses a futuristic approach in the greedy pursuit

strategy. The proposed algorithm initializes by considering the

2Code available at: http://www.csse.uwa.edu.au/~ajmal/code.html
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complete signal y as the residue. In the main iteration, it first
identifies the column d;, of D that maximally correlates with
the current residual vector. It uses this column to further identify
L columns in D that best correlate with the residual vector.
When normalized in l5-norm, the inner product of each of these
L vectors with the residual vector is at least a fraction ¢ of
the inner product of the unit vector of d;, and the residual
vector (line “7” in Algorithm 2). Here, ¢ € (0, 1) is an algorithm
parameter. The indexes of thus identified L + 1 columns form
a set 7. OMP-Star then points out the index j* € T of the
column that it chooses to augment the selected subspace. For a
moment, let us skip the discussion on the selection procedure
of j* (line “9” to “13” in Algorithm 2). Assume that j* is
exactly the index that we would like to select. This index is
added to a set S~! (i denotes the current iteration) containing
the indexes of D’s columns that form the selected subspace.
Once the selected subspace is augmented with the column
corresponding to j*, its span is used for updating the residual
vector similar to OMP. This process is repeated until one of the
stopping rules in line “17” of the algorithm is satisfied. Among
these rules, (a) and (b) are obvious and well known. In the rule
(c), we use a residual decay parameter 3 € (0,1). This rule
ensures that the algorithm stops if it is not able to reduce the
l-norm of the residual vector at least by a fraction £ in its last
iteration.

Algorithm 2 OMP-Star

Initialization:

I: Iteration: : = 0

2: Initial solution: a® = 0

3: Initial residual: r° =y — Da® =y

4: Selected support: S = support{a’} = ()
Main Iteration: Update iteration: ¢ = ¢ + 1

Identification:
5:  Compute €(j)=min, ||d;z—r"" g Vie{l,..., k},
using the optimal choice z; = d]r*~!/||d; [Es

6:  Find a minimizer, jo of €(5) : Vj € STL, €(jo) < €(4)
7: Findjy to jp: (df e /|1d;, [5) > tx (df v/ 1y [3)
8:

T = {jOa"'ij}
9: if cardinality of 7 = 1 then
10§ =jo
11: else

12:  j* < ForwardSelection(D,y,S" 1, T, f)
13: end if
Augmentation:
14: S'=8"tu{j}
Residual update:
15: o' = ming [|[Da — y||% s.t. support{a’} = S°
16: r'=y—Da’
Stopping rule:
17: If a) ¢ > desired iterations, or
b) [|lr?||2 < €o, or
©) [[r*]l2 > Blr*~1||2 stop,
otherwise iterate again.
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Procedure ForwardSelection

Input: D € R™*F y e R™*1 S, T, f
Output: j*
1: Ry =10
2: for eachelement 7; : i € {1,...,2z}in T do
3 S'=8SUT;
4: o= (D?;O Dgo)ingoy: Do =Matrix with columns
of D indexed in S°
r’ =y - Dgoa®
forg=1to fdo
7: Compute €(j)=min, ||djzj—r‘1’1||§, Vie{l,...,
k}. using 25 = dTre~1/||d; |
8: Find the minimizer, jo of €(j) : Vj & S971, €(jo) <
(j)
9: 81 =871U {4jo}
10: a’ = min, |Da — y||3 s.t. support{a} = 84
11: rf=y—Dal
12:  end for
Ri=Ri1 U], I7]3)
13: end for
14: j* = Element of T corresponding to the smallest element
inRk.,.

aw

For different iterations of OMP-Star, |7 | is expected to
be different, where |.| denotes the cardinality of the set. In
a particular iteration, |7| will be large if D contains many
columns with high correlation to d;;,. On the other hand, if
d;, has very low correlation with other columns, | 7| = 1. The
parameter ¢ provides the quantitative boundary for deciding
on the high and low correlation. For the cases when |T| = 1,
j* simply points to d;, (lines “9” and “10” in Algorithm 2).
Otherwise, the algorithm selects the index j* by calling out to
a procedure ForwardSelection (line “12” in Algorithm 2).
This procedure works as follows. It picks an element of 7T
and temporarily augments the selected subspace with the corre-
sponding column of D. It then performs f OMP-like iterations,
using this augmented subspace as the selected subspace. Each
of these iterations may add a vector (i.e., a column of D) to
the temporary subspace. Before the first iteration and after each
iteration, the procedure notes the /s-norm of the residual vector.
Once f iterations have been performed, it sums up the f + 1
values of the noted residuals and saves the cumulative residual.
The last f + 1 columns of the temporarily augmented subspace
are then removed. The aforementioned process is repeated for
each element of 7. Once finished, the procedure finds the
minimizer over the cumulative residuals. The element of 7
corresponding to this minimizer is considered j*.

Note that the column corresponding to j* is a suitable choice
in the current main iteration of OMP-Star because it is one
of the columns that best correlate with the residual. More
importantly, among all the suitable choices, it is potentially the
quickest in terms of reducing the residual. The later property
is ensured by the ForwardSelection procedure that identifies
the column by looking forward into f OMP-like iterations.
This futuristic identification helps in mitigating the effects of
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the local optimality issue. This notion is similar to the main
idea of A-Star, as mentioned in Section IV. However, there
is a discernible difference between the main objectives of the
two approaches. Whereas the proposed approach only aims
at improving the robustness against the local optima in the
solution space, A-Star aims at always finding the globally
optimal solution, usually at the cost of very high computation.
A-Star uses a cost function that employs an admissible heuristic
to ensure the global optimality of the solution. This solution
is found by iteratively expanding the current best node of the
search tree it parses. Therefore, A-Star keeps cost records of
all the expanded nodes and backtracks when a previously ex-
panded node has a cost lower than the currently expanded best
node. This makes A-Star an optimal search algorithm; however,
its search strategy is computationally very expensive [44].

The AxOMP proposed by Karahanoglu and Erdogan [51]
directly incorporates the idea of A-Star search into the OMP
algorithm. As mentioned in [51], similar to A-Star, the objective
of AxOMP is to find the optimal solution without particularly
considering the computational complexity. Therefore, the com-
putation time of AxOMP is generally very high. Compromise
over the computational complexity makes AxOMP less appeal-
ing for the problem of hyperspectral unmixing. In order to
maintain the computational advantages of the greedy pursuit
strategy, OMP-Star does not aim at the global optimality of
the solution. However, it is able to mitigate the effects of local
optimality by looking into its future iterations. Since Ax*OMP
directly uses the A-Star search strategy, it also requires a cost
function to decide on the best node to expand. Generally,
combining this cost function with OMP is not straightforward
[51]. An appropriately defined cost function also needs to com-
pensate for the different path lengths during the search process,
which adds to the complexity of this function. AxOMP uses
a path pruning strategy to make the search process tractable.
Since the proposed algorithm (i.e., OMP-Star) does not directly
integrate the A-Star search strategy with OMP, it does not suffer
from these limitations. In comparison to AxOMP, the proposed
algorithm is simpler and computationally much more efficient.

B. OMP-Star+

Reflectances of materials are nonnegative values. In other
words, for the problem of sparse unmixing, the columns of D
will only have nonnegative coefficients. Furthermore, (P +) in
(5) dictates that the coefficients of a should always be nonneg-
ative. We make use of these constraints and further tailor OMP-
Star for sparse unmixing. We denote this nonnegative version
of OMP-Star as OMP-Star+. For conciseness, we only present
the changes in OMP-Star that would convert it to OMP-Star+.

The first change must be made in line “5” of Algorithm 2. In
the ith main iteration, instead of simply minimizing ||d;z; —
r'~1|3 over z;, we must also make sure that the minimizers are
nonnegative quantities. Mathematically, Vj € {1,..., k}

. . i—112
€(j) = min [|d;z; — x|
=

max {d;‘-rri’l7 0}2

2
(CH s

i—112
=[x, -
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Computing €(j) as aforementioned implies that all the vectors
corresponding to the set 7 (line “8” in Algorithm 2) will be
almost parallel to the residual vector r*~!. This is different from
the case of OMP-Star, where we also allow the vectors to be
almost antiparallel to r*~!. Since OMP-Star can use negative
elements in «, it can later invert the direction of the suitable
vectors. However, in OMP-Star+, it is not possible because here
we constrain the elements of « to be positive. This constraint is
imposed by making a second change in Algorithm 2. We change
the optimization problem in line “15” of the algorithm with the
following constrained optimization problem:

o' = min | Da —y|3, st support{a’} =S8, a>0.
[0 4

The aforementioned changes impose nonnegativity in the
main iteration of OMP-Star. We also need to impose this
constraint in the ForwardSelection procedure, in order to
fully convert OMP-Star to OMP-Star+. Thus, for OMP-Star+,
we compute €(j) (line “7” of the Procedure) using the following
equation:

max {djTrq_l, 0}2

2
;1]

. 112 .
() = eo 3 — el k).

Similarly, the optimization problem in line “10” of the Proce-
dure is replaced with the corresponding constrained optimiza-
tion problem. These changes ensure that the selection of j*
made by the procedure follow the nonnegativity constraint.

V. COHERENCE REDUCTION

In SA problems, coherence 1 is one of the most fundamental
characteristics associated with D [45]. The coherence of a
matrix denotes the maximum absolute inner product between
any two distinct columns. That is

[ = max M (13)
i [|dillal|djll
Consider the following noiseless SA problem:
(Py): minllallp st Da=y. (14)

If y is a linear combination of p distinct columns of D, then
we are interested in the upper bound on p, such that the support
of the solution a always points to the correct p columns of D.
Tropp [45] showed that this bound depends on p, as follows:

:(1+3)
p< - (1+—]).
2 %

The bound has been proven in [45] for OMP and BP. This
bound is also valid for the algorithms proposed in this paper.’

5)

3The futuristic greedy heuristic will give the same result as the greedy
heuristic, if the latter is guaranteed to find the optimal result. This is exactly
the case when the data satisfy the inequality (15).
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Elad et al. [31] modified the bound by replacing p in (15)
with pa, where pp is the coherence of PD. Here, P must
be a square invertible matrix. This modification is achieved by
replacing the constraint in (P) by PDa = Py.

Note that the bound in (15) is pessimistic because p is the
worst case measure. If the columns of D have high correlation,
the inequality (15) becomes practically meaningless. For in-
stance, according to the aforementioned inequality, two mixed
signals in y (i.e., p = 2) requires p < 0.33 for their guaranteed
exact identification. However, ;1 &~ 1 when columns of D have
high correlation, as in sparse unmixing [11]. Therefore, the in-
equality (15) is not meaningful for sparse unmixing. However,
sparse unmixing can benefit from two important observations
based on the aforementioned discussion. 1) Low correlation
among the columns of D favors accurate support of the so-
Iution. 2) An invertible matrix P can modify this correlation
without affecting the results. Based on these observations, we
focus on finding the invertible matrix P, which reduces the
correlation among the columns of D, thereby improving the
accuracy of the solution support.

Tsai and Philpot [46] used derivatives to analyze remote
sensing data with high spectral resolution. Bieniarz et al. [49]
recently showed that, generally, the correlation among spectra
can be reduced with the help of derivatives. Therefore, we
use the same tool to construct the desired matrix P for the
hyperspectral unmixing problem. For a spectra captured at
constant wavelength intervals, we can formulate the derivative
operator (A\) in its generic form as follows:

o

0 1 if©
Ady = W Z(*l) (i)dbﬂ(oi)“]

i=0

(16)

where dj, is the reflectance of the spectra at band b. Among the
parameters of the operator, o is the order of the derivative, and s
is the band difference. The band difference denotes the number
of bands over which the slope is calculated. Domains of both
of the aforementioned parameters are positive integers. On the
right-hand side, A\ denotes the wavelength difference between
the bands over which the slope is computed.

We exemplify the construction of P from (16) for particular
values of s and o. Consider a spectra given as a vector d € R™,
for which the wavelength difference between two consecutive
samples is 0.01 pm. If we choose 0 = 1 and s = 2 in (16), the
equation simplifies to

dpyo — d

Aldy = %. (17)
By definition, the aforementioned derivative can be computed
for each band of d, except the last s = 2 bands. For those bands,
the derivative operation keeps the original reflectance values
of the signal. A} operates band by band. It is also possible to
take the derivative of the complete vector d by left multiplying
it with yP, where v € R is a constant, and P is a matrix in
R™*™, For A}, v=—1/(2x 107?) and P is a matrix with
its elements p; ; =1, Vi € {1,...,m} and p; ;4o = —1, Vi €
{1,...,m — 2}. All other elements of P are zero.
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The square matrix P created for A} is an invertible matrix
because it has 1s at its diagonal and nonzero elements only
in the upper triangle. In fact, this property holds for all the
P matrices created with the aforementioned strategy for any
values of s and o satisfying the inequality* (1 + 0s) < m. The
P matrix thus created can directly be left multiplied with D
to take derivatives of all the spectra in the library simultane-
ously. We can either choose to ignore v or multiply it with
P and use this modified matrix. We prefer the latter choice
as it corresponds to the exact definition of derivatives used in
[46]. In general, the derivative operator is able to enhance the
dissimilarities between two seemingly identical spectra. This
results in the reduction of correlation between the spectra.

VI. EXPERIMENTS WITH SYNTHETIC DATA

Here, we evaluate the proposed approach with synthetic data.
The experiments performed on synthetic data are significant
because the endmembers and their corresponding fractional
abundances are known, enabling quantitative analysis of the
unmixing. After introducing the data used in the experiments,
we first discuss the preprocessing of the data with derivatives.
This is followed by the experiments for evaluating the proposed
algorithms for endmember identification and fractional abun-
dance estimation.

A. Data

In the experiments with synthetic data, we created our ma-
trix D from the NASA Jet Propulsion Laboratory’s Advanced
Space-borne Thermal Emission and Reflectance Radiometer
(ASTER) Library.’ This library contains pure spectra of 2400
natural and man-made materials. For the experiments, we chose
425 of these spectra. The spectra were chosen such that their
coherence 1 1s 0.9986. We kept 1 < 1 in order to ensure that all
the selected spectra were unique. We resampled the spectra in
the wavelength range from 0.4 to 2.5 um, at a constant interval
of 10 nm. This resulted in 224 samples per spectra. We per-
formed this resampling, in order to match the sampling strategy
of NASA’s Airborne Visible Infrared Imaging Spectrometer
(AVIRIS) [29]. From the resampled spectra, we dropped the
first 24 bands because of zero or very low reflectance values.
We created D with the processed spectra, which made it a
200 x 425 matrix. Henceforth, we use the term “library” for D.
All the techniques compared in the experiments use the same
library. Among the 425 spectra in the library, 285 belong to
minerals, 15 belong to soils, and 125 represent rocks.

For the unmixing problem, we create a mixed signal/pixel y
by randomly selecting p spectra from the library. We simulate
the hyperspectral data cube as 500 mixed pixels, in which
each pixel comprises p different randomly selected spectra/
endmembers. Thus, we simulate a highly mixed scenario. Pixel-
based algorithms enjoy good performance in these scenarios
because they do not depend on the contextual or spatial in-

4The inequality follows from the general definition of the derivative given in
(16) and gives the upper bound on the parameter values.
5 Available at http://speclib.jpl.nasa.gov
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formation in the data. Since the proposed algorithms are pixel
based, we compare their performances only with the other
pixel-based algorithms. Following the experimental protocol in
[11], we draw the fractional abundances of the endmembers
in each pixel of the hyperspectral data cube from a Dirichlet
distribution. Therefore, the fractional abundances in each pixel
sum up to 1, and the ASC holds for each pixel. Unless stated
otherwise, the results reported as follows are the mean values
computed over the hyperspectral data cube.

B. Analysis of Derivatives

To analyze the correlation reduction characteristic of deriva-
tives, we introduce the mean coherence (i) for a spectral
library D

1 |dfa,]
K Z Ll

i=1i#]

(18)

=i
Il
I

which maximizes the correlation of each spectra d; over all the
other spectra in the library and takes the mean of the computed
maximum values. Note that spectral derivatives generally re-
duce the correlation among the spectra. Since p is only the
worst case measure, it is not possible to correctly analyze this
property of the spectral derivatives using ;.. Compared to , i
gives a better picture of the similarity among the spectra in the
library because every spectra in D contributes to ji. The mean
coherence of D in our experiments is 0.9974. We calculated the
difference between the mean coherences of D before taking its
derivative (i.e., j1) and after taking the derivative (i.e., jin). The
greater is this value, the more advantageous is the derivative
operation for the sparse unmixing problem. Fig. 2(a) shows the
plots for i — fip (scaled by a factor of 100) as a function of
band difference s. The plots are shown for the first-, second-,
and third-order derivatives.

In order to benefit from derivatives in sparse unmixing, they
must also be operated on the mixed pixels. The mixed pixels
can be noisy, whereas a derivative operation is usually sensitive
to noise. This is because derivatives amplify the sudden changes
in the reflectance patterns of spectra. Keeping in view the noise
sensitivity of derivatives, we analyzed the effects of noise am-
plification caused by derivatives. For this purpose, we corrupted
each spectra in D with additive noise to create a library D. Each
spectra in D has SNR = 35 dB. We took the derivatives of D
with different values for the parameters s and o. Each time, we
computed SNRx using the following formula:

B [dal]
B [lda - dal]

SNR, = 101log (19)

The aforementioned expression estimates the SNR of the
differentiated library f)A in decibel. In this expression, da
denotes the spectra in the differentiated library D o, d A denotes
the spectra in f)A, and E[.] is the expectation operator. In
our experiments, we have used white noise and correlated
noise. Therefore, we separately analyze their amplification with
derivatives. We have followed Bioucas-Dias and Nascimento
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noise, with maximum noise power around band 100.

[52] to generate both types of the additive noise. Let R,, =
diag(ci,...,02,) be the correlation matrix of the additive
noise, where the diagonal of the matrix follows a Gaussian
shape centered at the band m/2 and

0'2 7(.7%)2
o= ——e 27 Vie{l,...,m}.

e
Lon2r

In (20), the parameter 1) controls the variance of the Gaussian
shape (i.e., n — 0 generates a single-band noise, and n — oo
results in white noise), whereas

(20)

k
M CHE
— @n

controls the total noise power. Further details on the afore-
mentioned noise model can be found in [52]. For the fixed
value of SNR = 35 dB, we vary the value of 7 to obtain the
desired type of noise. In all of our experiments, we have used
1 = 500 to generate the white noise and 17 = 18 to generate the
correlated noise. Fig. 3 shows the results of using these values
in generating the additive noise.

Fig. 2(b) and (c) plot the difference in SNR and SNRx, as a
function of the band difference s for different values of o, for
white and correlated noise, respectively. The plots in the figures
remain qualitatively similar for different values of SNR (in the
range from 20 to 100 dB). We restricted the analysis only up to
third-order derivatives in Fig. 2 because the noise amplification
for higher order derivatives becomes too large, rendering the
derivative operation unbeneficial for sparse unmixing.

Based on the plots in Fig. 2, we selected s =5 and 0 =1
for the derivative operation in our experiments, which are
presented as follows. These values of the parameters provide a
reasonable tradeoff between the correlation reduction and noise
amplification at SNR = 35 dB. Notice that the effect of noise
amplification reduces with the increase in the value of s. This
is due to the smoothing caused by the derivative operation,
which is illustrated in Fig. 4. In general, for small values of
SNR, it is more beneficial to use larger values of s to control
the noise amplification, whereas for high SNR of the spectral
signatures, s should be kept small (e.g., 1 or 2) to fully exploit
the coherence reduction ability of derivatives.

C. Experiments for the Endmember Identification

1) Unmixing Fidelity: A hyperspectral unmixing approach
should be evaluated according to the two goals of unmixing
mentioned in Section II-B. For the first goal of “finding the
correct set of endmembers,” we introduce the evaluation metric
of unmixing fidelity of a sparse unmixing solution, i.e., ®(a) —
[0,1]. If P = {z|x is the index of an endmember in D} and
A = {ala is a nonzero elements in o}, then

o(a) = PO

(22)
Here, |.| denotes the cardinality of the set. Unmixing fidelity
calculates the fraction of the correct support in the solution cx.
It does not take into account the fractional abundances because,
with known correct support of «, it is always possible to
compute the fractional abundances separately (e.g., with the
least squares method).
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value of p is mentioned beside it.

2) Parameter Value Selection: Before experimenting with
the proposed algorithms, we must select the values of the
parameters ¢ and f for the algorithms. In an iteration, ¢ decides
the columns of D to be chosen for the ForwardSelection
procedure, whereas f is the number of OMP-like iterations
performed by the procedure to select the best column. We
selected the values of these parameters by experimenting on
separate training data, which were created with the same pro-
tocol as mentioned in Section VI-A. In these experiments, the
algorithms were given the library and the pixel after operating
A} on them. For the library, the derivative was operated after
normalizing its columns in /;-norm. Note that we follow the
same procedure of preprocessing the data for all the greedy
algorithms in the experiments to follow. For the selection of val-
ues of parameters, we chose the data to be noise free, withp = 5
for each pixel. We analyzed the unmixing results for different
values of the parameters for the proposed algorithms. These
parameters offer a tradeoff between ® and the computation time
of the algorithms. Fig. 5 shows plots of the results that also offer
insights into the general behavior of the algorithms for different
values of the parameters.

Fig. 5(a) shows that larger values of ¢ reduce the unmixing
fidelity of the solution. However, they also decrease the com-
putation time of the algorithms in a linear fashion, as shown
in Fig. 5(b). This trend is the same for OMP-Star and OMP-
Star+. Fig. 5(c) shows the effects of increasing f on ®. In the
figure, the three groups of curves correspond to three different
values of p. It is clear from the figure that increasing f generally
improves the unmixing fidelity of the solution. This statement
is valid for all the values of p. Notice that, with an increase

in p, the unmixing fidelity decreases. This is a general trend
for sparse unmixing algorithms. However, the fact that the
cardinality of a mixed pixel in practical scenarios is usually
on the order of four to five [11] mitigates the adverse effects
of this trend. For the sake of thoroughness of the analysis, we
used values of p as high as 10 in our experiments.

3) Results: Based on the aforementioned experiments, we
selected t = 0.92 and f = 2 for OMP-Star and OMP-Star+. We
have performed experiments for the comparison of these algo-
rithms with all the other greedy pursuit algorithms mentioned in
Section III. Fig. 6 shows this comparison in terms of unmixing
fidelity of the solutions as a function of p. The experiments
were performed for the cases when the mixed pixels were noise
free [see Fig. 6(a)] and noisy. For the noisy case, we chose
SNR = 35 dB with additive white noise [see Fig. 6(b)] and
correlated noise [see Fig. 6(c)].

In Fig. 6, the algorithms represented by dotted lines are
impractical choices for hyperspectral unmixing; however, we
have included their results for the sake of thoroughness of the
analysis. Among these algorithms, SP, CoSaMP, and ROMP
must know the value of p a priori. In hyperspectral unmixing,
this value is usually unknown. We have also shown LAOMP
and Ax*OMP with dotted lines because their computational time
is so high that they loose the computational advantages of the
greedy approach (see Section VIII). AxOMP is one algorithm
that is consistently able to show better results than the proposed
algorithm for p > 5. However, the proposed algorithms have
computed these results nearly 200 times faster than AxOMP. It
is also worth mentioning here that p is usually 4 to 5 in practical
scenarios [11].
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For the experiments, the data have been preprocessed with
spectral derivatives for all the greedy algorithms, including the
proposed ones. As shown in Fig. 2(a), the preprocessing re-
duces the coherence between the spectral signatures. However,
this reduction is not sufficient to achieve accurate endmember
identification using the greedy algorithms. Therefore, even after
the preprocessing of the data, a greedy algorithm must show
robustness to the high coherence of the data for better results.
In the proposed algorithms, this robustness is achieved by the
futuristic heuristic, which resulted in the better performance.

Here, we have assumed that p is known beforehand (the
assumption will be removed in the next section). Therefore,
the proposed algorithms use stopping rule (a) in line “17” of
Algorithm 2 (see Section IV). All the other algorithms also
use the same stopping rule in this analysis. For LAOMP, we
have selected L = 3, and for gOMP, we have chosen L = 2.
Correct values of p have been given to OMP, OMP+, ROMP,
SP, CoSaMP, LAOMP, and gOMP as their input parameters. For
AxOMP, we have chosen I =3, B=40, 5=1.2, Kmax=10,
and € = 1077, These parameters respectively represent the
“number of initial search paths,” “the branching factor in
each iteration,” “the parameter of adaptive auxiliary function,”
“maximum allowed sparsity level,” and “the residual power for
termination of the algorithm.” We have chosen the “adaptive”
cost function for AxOMP (see [51] for details) in all of our
experiments, as this function resulted in the best performance
of the algorithm. For each of the algorithms, we have optimized
the parameter values using separate training data. With the
aforementioned parameter settings, we have also analyzed the
algorithms for the unmixing fidelity as a function of SNR of
the mixed signals, with p = 5. Results of these experiments are

50 55 60 65 70 75
SNRindB

(b)

Unmixing fidelity as a function of SNR: For all the plots, p = 5. (a) White noise. (b) Correlated noise.

shown in Fig. 7. It is shown in the figure that the proposed
algorithms are able to consistently perform well.

D. Experiments for Fractional Abundance Estimation

Once the endmembers have been identified, the unmixing
problem reduces to computing the fractional abundances of
the identified endmembers. If o € R¥ is the estimated frac-
tional abundance vector and «, € R is the vector containing
the actual fractional abundances, then the Euclidean distance
|lap — ||, is a suitable metric for evaluating the solution for
fractional abundance estimation. Fig. 8 uses this metric to com-
pare the performance of the proposed algorithms against the
popular unmixing algorithms, which are based on convex relax-
ation of the problem. Among these, SUnSAL+ and CSUnSAL+
are the nonnegative variants of SUnSAL and CSUnSAL. Fig. 8
shows that the performance of the proposed algorithms is com-
parable to these well-known algorithms. We should mention
that the proposed algorithms achieve these results much faster
than the other algorithms shown in the figure. Comparison of
execution times of all the algorithms is given in Section VIII.

For the proposed algorithms, the results shown in Fig. 8 are
obtained using the following strategy:

1) Compute o after taking the derivative of the data, as
mentioned in Section VI-C2.

2) Create D 4 from the columns of D corresponding to the
support of a.

3) Use D4 and y as inputs for CSUnSAL+, which calculates
the fractional abundances.

4) Replace the fractional abundances in o with the corre-
sponding new values.
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The aforementioned strategy is similar to the library pruning
concept in [32], but we use the algorithm CSUnSAL+, only
for estimating the fractional abundances. In Fig. 8, the value
of the regularization parameter A\ (see (7) in Section II-B) is
set to 107° for all of the convex relaxation-based algorithms,
whereas the tolerance for the primal and dual residuals (see [34]
for details) has been set to 1073 for SUnSAL and CSUnSAL,
and 107° for SUnSAL+ and CSUnSAL+. All of these values
have been optimized on separate training data. We have used the
same parameter settings for CSUnSAL+, when it is used in the
aforementioned strategy. For the convex relaxation algorithms,
we have reported the results on the original data. When differen-
tiated data are used with these algorithms, the amplified noise
causes problems in accurate estimation of abundances. In the
presence of high noise, setting the algorithms for high-fidelity
signal reconstruction leads to poor estimates of abundances be-
cause the computed abundances also approximate the dominant
noise component. To reduce this effect, we can set the algo-
rithms with high tolerance for signal reconstruction. However,
it does not solve the problem completely. Due to high tolerance,
the underlying original signal is also poorly approximated by
the estimated abundances, resulting in compromised abundance
estimation. Furthermore, increasing the tolerance beyond a

certain range drastically aggravates the accuracy of the com-
puted abundances. Therefore, choosing the right tolerance value
becomes nontrivial. We avoid this issue in the case of the greedy
algorithms because of the aforementioned strategy. Since the
abundances are finally computed on the original data (and not
on the differentiated data) in step 4, we do not encounter the
problems caused by the noise amplification. We have also ex-
perimented with the convex relaxation-based algorithms using
the differentiated data. However, despite careful optimization of
the parameters, the abundances estimated by these algorithms
using the differentiated data were less accurate, as compared
to those computed with the original data. Therefore, we have
reported the results on the original data in Fig. 8. Notice that, we
have also not included the convex relaxation-based algorithms
in the comparison for unmixing fidelity in Section VI-C. This
is because their results are not comparable with the proposed
algorithms for that metric. For instance, Fig. 9 shows two
examples of the solutions found by OMP-Star+ and CSUn-
SAL+. In both cases, for the five actual endmembers (first
row), OMP-Star+ identifies five endmembers (second row), out
of which four are correctly identified. This results in () =
0.8 in both cases. On the other hand, CSUnSAL+ identifies
several endmembers with nonzero fractional abundances. In
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TABLE 1
COMPARISON OF GREEDY ALGORITHMS FOR FRACTIONAL ABUNDANCE ESTIMATION: BELOW EACH ALGORITHM’S NAME,
THE COLUMN SHOWS THE VALUES OF ||co — ||, FOR THE CARDINALITY OF THE MIXED PIXELS IN THE
FIRST COLUMN. SNR = 35 dB FOR THE MIXED SIGNALS WITH WHITE NOISE

Cardinality OMP OMP+ OMP-Star OMP-Star+ ROMP  LAOMP SP CoSaMP  gOMP  A*OMP
2 0413 0408 0311 0.305 0359 0351 0393 0476 0359 0501
3 0508 0498 0402 0.392 0511 0438 0517 0586 0421 0493
4 0564 0552 0461 0.456 0560 0485 0560 0632 0470 0485
5 0580 0552 0521 0.504 0573 0480 0582 0661 _ 0496 0.480
6 0573 0561 0530 0.518 0556 0512 0584 0671 0488 0467
7 0577 0541 0545 0.530 0545 0507 0584 0676 0490 0451
g 0575 0539 0561 0.551 0535 0522 0586 0681 0488 0449
9 0581 0541 0571 0.562 0527 0511 0581 0673 0487 0453
10 0591 0532 0519 0.569 0519 0497 _ 0.586 0661 0489 0459

TABLE 1I
EXPERIMENTS OF TABLE I, REPEATED WITH CORRELATED NOISE

Cardinality OMP OMP+ OMPStr OMP-Str+ ROMP LAOMP  SP  CoSaMP gOMP A OMP
2 0406 0405 0.328 0.324 0355 0348 0381 _ 0448 0355 _ 0398
3 0503 0495 0378 0.370 0539 0392 0479 050 0417 _ 0386
q 0556 0541 0423 0.404 0582 0437 0534 0589 0462 0379
5 05710544 0.460 0.433 0582 0449 0554 0604 0485 0370
6 0551 0521 0466 0.433 0559 0457 0524 0598 0455 0372
7 0551 0517 0468 0.450 0547 0451 0534 0610 0457 0369
8 0.537 0498 0481 0.447 0527 0444 0518 0602 04499 0376
9 0532 0488 0.501 0.469 0526 0439 0529 0609 0450 _ 0382

10 0529 048 0502 0.467 0507 0443 0520 0613 0450 039

Fig. 9(a), noting that many of the nonzero abundances are very
small, we can set a threshold below which the abundances can
be neglected. This can improve the unmixing fidelity of the
solution. However, choosing the value of the threshold becomes
tricky in the cases similar to Fig. 9(b), where some correctly
identified endmembers have fractional abundances close to or
smaller than the wrongly identified endmembers. In Fig. 9(b),
choosing 0.05 as a threshold would result in the detection of
eight endmembers, out of which only four would be correct,
whereas a value of 0.1 would give only two endmembers.

For the results shown in Figs. 8 and 9, we did not assume
prior knowledge of the cardinalities of the mixed pixels. There-
fore, the proposed algorithms use stopping rule (c¢) in line “17”
of Algorithm 2, with 5 = 0.9. The value of the residual decay
parameter 3 was chosen with the help of separate training
data. In order to compare the proposed algorithms with the
other greedy algorithms for fractional abundance estimation,
we again assumed that the value of p is known for these
algorithms (the proposed algorithms do not use the value of
p here as well). In this case, for all the greedy algorithms,
including the proposed algorithms, we computed the fractional
abundances following the aforementioned strategy with a small
variation in step 3. Instead of using CSUnSAL+ in this step,
we used the nonnegative least squares method to estimate the
fractional abundances. The results are shown in Table I for the
data with Gaussian white noise and in Table II for the data with
correlated noise. To obtain these results, we normalized D 4 and
y in l1-norm before computing the fractional abundances. Ac-
cording to the analytical results of Theorem 1 in Section II-C,
this automatically imposes the ASC along the nonnegativity
constraint over the least squares method. Here, we have taken
advantage of the results of the theorem only in computing the

fractional abundances. Generally, the process of differentiation
can introduce some negative values in a nonnegative matrix.
However, since D 4 and y contain the undifferentiated signals,
the results of the theorem hold for these data. We emphasize
that, in all the experiments in this work, we have used the
differentiated data only in identifying the correct set of the
endmembers of the mixed pixels using the greedy algorithms
(including the proposed algorithms). The fractional abundances
are always computed using the original spectral signatures.
Therefore, we have been able to take advantage of the results of
Theorem 1 for all the greedy algorithms. It is worth mentioning
that spectral derivatives have never been exploited for greedy
algorithms earlier in this manner.

One interesting observation in these tables is that, for p > 5,
some of the algorithms perform slightly better than the pro-
posed algorithms. This is particularly true for gOMP. How-
ever, gOMP’s performance for unmixing fidelity is the poorest
among the greedy algorithms (see Figs. 6 and 7). The reason
for this phenomenon is simple. For the large values of p, the
average true fractional abundance of the endmembers becomes
very small for a pixel. Algorithms that overestimate the number
of endmembers in a pixel (e.g., gOMP) generally assign small
values to all the fractional abundances because of ASC. For
the correctly identified endmembers, small values become good
approximations of the actual fractional abundances. At the same
time, small fractional abundances are also good approximations
for the falsely identified endmembers (as their true fractional
abundances are zero). This results in an overall reduction of
|lag — ||5. The algorithms that do not overestimate the num-
ber of endmembers can get heavily penalized when they detect
wrong endmembers, when p is high. This is because they end
up assigning relatively large values to the fractional abundances



2170

Sulfates
K=Alunite 150c
K=Alunite 250¢
K-Alunte 450<
NaB2-Alunite 100c
Nad0-Alundte 400c
Jarosite
Abunite-+ Kaolinite
andfor Muscovite
Knolinetc group clays
Kaohnte, wl
Knolinite, px!

Knolinte + smectite
OF MusScove

Halloyste
Dickite

Calcite
Calcite +Kaoknite
Calcite +
mo|

la

I Na-Montmorillonite
Nentronite (Fe clay)

other minerals
low=Al muscovite
med-Al muscovite

I high-Al muscovite
ChloritesMusc Mont
Chiorite
Buddingtonite

[: Chalcedony: OH Otz

Pyrophylite +Alunte

Fig. 10. Mineral map of Cuprite mining district, Nevada: The area inside
the red rectangle corresponds to the hyperspectral data cube used in the
experiments. The map is made available by USGS at http://speclab.cr.usgs.gov/
cuprite95.tgif.2.2um_map.gif.

when the actual values are zero. Despite this phenomenon, in
our opinion, ||arg — atf|, is still a good metric for evaluation of
fractional abundance estimations as it accounts for all the end-
members identified by an algorithm. This metric gives a clear
picture of the results, particularly for p < 5 (which corresponds
to practical scenarios). The root-mean-square error metric used
in [10] and [32] is evaluated with only the correctly identified
endmembers. Therefore, it generally favors the overestimating
algorithms for all the values of p.

VII. EXPERIMENTS WITH REAL DATA

Here, we evaluate the proposed algorithms on real-world
hyperspectral data. We compute the abundance maps of the
materials for the well-known AVIRIS Cuprite data set.® This
data set was collected over a region in the Cuprite mining
district, Nevada. The mineral classification map for this region,
made available by the U.S. Geological Survey (USGS), is
shown in Fig. 10. The classification map shown in the figure
is computed with the Tricorder software product.” In our ex-
periments, we use the hyperspectral data cube corresponding
to the region inside the rectangle. We use 188 spectral bands
of this data set (low-SNR bands were dropped); thus, the used
hyperspectral cube has the dimensions 350 x 350 x 188. In
these experiments, we create our library (D88%325) from the
USGS spectral library [50], which includes the spectra of the
minerals present in the data cube.

6 Available online: http://aviris.jpl.nasa.gov/html/aviris.freedata.html
7 Available online: http://speclab.cr.usgs.gov/PAPERS/tetracorder/
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The true abundance maps of the real-world data are not
available; therefore, the previous works in sparse unmixing
(e.g., [11] and [32]) use the real-world data for qualitative
analysis. We follow the same approach and provide the results
for visual comparison. We use the Tricorder classification map
as a reference. Note that this reference map should not be
considered as the ground truth for abundance maps. This is be-
cause a) the Tricorder map was computed in 1995, whereas the
available data set was collected in 1997 by AVIRIS, and b) the
Tricorder map considers each pixel to be pure and classifies
it as a member of a class that is correlated to the represen-
tative mineral in the pixel. As unmixing performs subpixel
classification, the computed results can be different from the
classification results. Nevertheless, the Tricorder map serves
as a good reference for the visual comparison of the sparse
unmixing solutions.

Fig. 11 compares the proposed algorithms with the other pop-
ular unmixing algorithms for the abundance map estimation.
The figure includes only those algorithms that showed good
results in practical time. The parameter settings of all the algo-
rithms are kept same as in Section VI-C3. From left to right, the
first row of the figure shows the distribution maps of Tricorder
for Alunite, Calcite, Dickite, and Chalcedony, respectively. The
second and the third rows show the corresponding abundance
maps computed by OMP-Star+ and OMP-Star, respectively. It
is easy to see that these algorithms have generally computed
high abundances at the pixels where the distribution maps show
existence of the minerals. The other algorithms have also shown
similar results; however, their estimated fractional abundances
generally have lower values than those of the proposed algo-
rithms. Results of the greedy algorithms in the figure were ob-
tained in the same manner as those obtained in Tables I and II.

VIII. COMPLEXITY ANALYSIS

If m is the number of spectral bands, %k is the number of
spectra in D, and p is the cardinality of the mixed pixel,
then the per-pixel computational complexity for the proposed
algorithms is lower bounded by O(mkp) and upper bounded by
O(Emkp). Here, E is the product of the parameter f and the
cardinality of the set T, averaged over the algorithm iterations.
The lower bound is achieved when |7| = 1 in all the iterations
of the algorithm. In that case, the algorithm does not use the
ForwardSelection method at all. Therefore, its computational
complexity becomes the same as OMP, which is O(mkp) [42].
The upper bound is achieved when | 7| > 1 in all the iterations.
In general, we give the computational complexity of the pro-
posed algorithms as O(emkp), where 1 < e < F. In the exper-
iments discussed in the earlier sections, e was on the order of 4
for the proposed algorithms. We illustrate this calculation with
the help of Fig. 12. The figure shows the value of | 7| for five
iterations of OMP-Star, per pixel, for a data cube of 30 mixed
pixels. We chose ¢t = 0.92, and the cardinality of the mixed
pixels is set to 5. The figure shows that | 7| = 1 for 63 iterations
out of the total 150 iterations performed by the algorithm. Each
of these 63 iterations has the same computational complexity as
that of an OMP iteration. For the remaining 87 pixels, the av-
erage value of |7 is 3.42. With f = 2, the algorithm performs
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TABLE III
PROCESSING TIME (IN SECONDS) FOR UNMIXING 500-PI1XEL DATA CUBE WITH 35-dB SNR USING WHITE NOISE.
EACH PIXEL IS A MIXTURE OF FIVE RANDOMLY SELECTED MATERIALS. TIME IS COMPUTED ON A
DESKTOP PC EQUIPPED WITH AN INTEL CORE 17-2600 CPU (AT 3.4 GHz) AND 8-GB RAM

Algorithms A*OMP CSUnSAL+ SUnSAL+ CSUnSAL LAOMP SUnSAL  OMP-Star+
Time () 3812.8 49.9 48.8 335 325 31.4 19.4
Algorithms OMP-Star CoSaMP OMP+ OMP ROMP gOMP SP
Time () 14.4 39 3.1 2.8 1.9 1.7 1.6

a total of 87 x 3.42 x 2 ~ 595 OMP-like iterations for these APPENDIX A

pixels. Thus, OMP-Star has the computational complexity of
63mkp + 595mkp = 658mkp for the whole data. Which gives
e = 658/150 = 4.4 for the complete data cube.

The rest of the greedy algorithms used in this paper show
the worst case computational complexities of the same order
as OMP [38], [42], except LAOMP and Ax*OMP. LAOMP has
the complexity O(mkp?L), where L is the number of columns
used in the identification step of the algorithm (see Section III).
The computational complexity of A*OMP depends upon the
chosen cost function, path pruning strategy, and related parame-
ter settings. See [51] for details. The computational complexity
of the convex relaxation-based algorithms used in this paper
has been reported O(k?) per iteration [35]. Table III compares
the processing times of MATLAB implementations of all the
algorithms used in this paper. The timings were computed for a
hyperspectral data cube of 500 pixels with SNR = 35 dB using
white noise and p = 5. Except for the proposed algorithms,
we assumed prior knowledge of the value of p for all the
greedy algorithms. The proposed algorithms use the stopping
rule (c) in line “17” of Algorithm 2, with 5 = 0.9.¢ = 0.92, and
f = 2. Furthermore, the proposed algorithms use the four-step
strategy, as mentioned in Section VI-D, to estimate the frac-
tional abundances. Where required, we use the 1sgnonneg
procedure of MATLAB to implement the nonnegative least
squares method. All the algorithms utilize the same parameter
settings, as discussed in the previous sections.

IX. CONCLUSION

This paper proposes a greedy pursuit algorithm, called OMP-
Star, for sparse unmixing of hyperspectral data. OMP-Star is
a pixel-based algorithm that uses a futuristic greedy approach.
This approach is inspired by a popular search algorithm, called
A-Star. OMP-Star shows robustness against the high coherence
of the data. This work also enhances OMP-Star to its nonneg-
ative variant, called OMP-Star+. This constrained version of
the algorithm exploits the fact that the fractional abundances
of endmembers are nonnegative quantities. We propose to pre-
process the hyperspectral data for greedy algorithms by taking
its derivative. Generally, the derivative operation reduces the
correlation among the spectral signatures, thereby improving
the accuracy of SA results. However, this operation is sensitive
to noise. Therefore, we explicitly evaluate derivatives for sparse
unmixing and devise a strategy to use them with greedy algo-
rithms. We test the proposed approach thoroughly on simulated
and real-world hyperspectral data. The results demonstrate high
effectiveness of the proposed approach.

Here, we show that the results from Theorem 1 in Section II-C
are in line with Elad’s results in [31]. We follow the line of
reasoning in [31] and arrive at the condition of equivalency of
these results.

Proof: Consider the model

Da=y, sta>0. (23)

Since all the entries in D (i.e., reflectances) are nonnegative, the
row span of D intersects the positive orthant. Mathematically,

Jhsth’D =w’ > 0. (24)

Let W = diag(w), which is a strictly positive definite matrix,

then (23) can be rewritten as
st.a>0

DW 'Wa =y, (25)

or

Dz = y, z>0 (26)
where D = DW ™! and z = Wa. Left multiplying (23) by
h” on both sides gives ¢ = h”'y on the right-hand side. Since
h™D = w7”, we have w’ e = ¢. That means
wia=1"Wa=1Tz=c¢ (27)
where 1 € R™ is a column vector of 1s. Equation (27) suggests
that the /;-norm of z € {f)z =y,z > 0} is the constant c.

In the aforementioned equations, we can always choose
h = 1, which makes D nothing but D with its columns nor-
malized in /-norm and makes ¢ = ||y||;. Thus, if the columns
of D already have unit /;-norm, then W is an identity matrix
and z = a. Therefore, ||z]|; = ||a|/s = ||y|l1. This, in turn,
implies automatic imposition of the generalized ASC, where
ly|]1 becomes the pixel-dependent scale factor. Note that this
result coincides with Corollary 2a in Section II-C, and we arrive
here after assuming the normalized version of D.

It is easy to see that there can be many potential h vectors
that satisfy the condition in (24). Which implies the existence
of many potential matrices for W, and many potential values
of c. Therefore, ¢ becomes a constant only when a particular h
is operated on D to get w. In [31], Elad used h = 1 to convert
the systems of equations in (23) to (26) and claimed ||z||; to be
constant. No claim for ||| to be constant was made in [31].
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