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There is an urgent need for the development of sampling techniques which can provide accurate and precise count, size, and biomass data
for fish. This information is essential to support the decision-making processes of fisheries and marine conservation managers and scientists.
Digital video technology is rapidly improving, and it is now possible to record long periods of high resolution digital imagery cost effectively,
making single or stereo-video systems one of the primary sampling tools. However, manual species identification, counting, and measuring of
fish in stereo-video images is labour intensive and is the major disincentive against the uptake of this technology. Automating species identifi-
cation using technologies developed by researchers in computer vision and machine learning would transform marine science. In this article,
a new paradigm of image set classification is presented that can be used to achieve improved recognition rates for a number of fish species.
State-of-the-art image set construction, modelling, and matching algorithms from computer vision literature are discussed with an analysis of
their application for automatic fish species identification. It is demonstrated that these algorithms have the potential of solving the automatic
fish species identification problem in underwater videos captured within unconstrained environments.
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Introduction
Biomass estimation of various fish species is of key importance to

marine scientists, environmental conservation agencies, as well as

fisheries. Changes in the distribution and relative abundance of fish

species in different parts of the oceans can indicate natural or an-

thropogenic changes in ecological conditions some of which can be

managed with appropriate actions (e.g. enforcement of species-

specific fishing bans and quotas). Regular surveys are performed in

the oceans to estimate the relative biomass and distribution of target

or indicator fish species. Two key technologies used for this purpose

are acoustic surveying (Fernandes, 2009; Fablet et al., 2009) and

video-based monitoring (Harvey and Shortis, 1995; Shortis et al.,

2009). Underwater video-based surveying is being more widely de-

ployed due to the low-cost of digital video cameras and possibilities
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to verify the estimates at a later point in time, based on video record-

ings (Cappo et al., 2003; Mallet and Pelletier, 2014).

Due to the fundamental importance of fish species recognition,

several computer vision-based techniques have been proposed

over the last two decades to automatically identify the species of

fish in a given image. These techniques can be broadly categorized

into three main application areas based on their scope:

� Recognizing dead fish (e.g. on a conveyor belt) under con-

trolled indoor or outdoor conditions

� Recognizing live (swimming) fish under controlled underwater

conditions (e.g. during aquaculture transfers)

� Recognizing live (swimming) fish in unconstrained underwa-

ter conditions (e.g. free swimming fish in their natural habitats

imaged by static cameras)

Earlier work in fish species recognition focused on the recogni-

tion of dead fish (Strachan et al., 1990; Strachan and Kell, 1995).

The primary features used for discriminating various fish species

were shape descriptors and invariant moments. The use of colour

features besides shape features was investigated by Strachan

(1993). The key application for these methods is sorting of fish in

commercial and research fishing vessels. A method to distinguish

fish species using a laser light source and a camera to extract fea-

tures from three-dimensional fish shape (height, width, thick-

ness) was developed by Storbeck and Daan (2001). Recent

research in this direction employs custom designed imaging and

conveyor belt systems with controlled illumination to achieve

over 99% sorting reliability on several fish species of importance

(White et al., 2006). The set of image features used for recogniz-

ing fish species has also expanded from primarily shape-based

features to deformable shape modelling and texture-based fea-

tures (Larsen et al., 2009).

Pioneering work in the area of deploying stereo camera sys-

tems in controlled aquaculture environments was done by Ruff

et al. (1995) and Harvey and Shortis (1995). The primary focus of

these techniques is decision support for farm managers and ma-

rine scientists. Fish species identification and length measure-

ments are typically done manually by human operators in the

laboratory. Methods for fish sorting and species identification in

freshwater fish farms which grow several fish species together in a

pond were developed by Zion et al. (1999, 2000). To improve the

accuracy and speed of the system, they developed a computer vi-

sion system that images fish swimming through a narrow channel

with their sides to the camera to get a profile view of each fish.

Background illumination was used to overcome water opaque-

ness and to generate high image contrast. Using this system they

were able to achieve over 95% fish identification accuracy in real-

time (Zion et al., 2007). Another system for species identification

and size measurement in a fish ladder, a narrow special passage in

dams that makes it possible for fish to bypass the structure of the

dam, was developed by Lee et al. (2008). They used a controlled

illumination setup and employed colour features to extract fish

from the imagery. Then, contour matching was employed to do

species recognition as well as size measurement.

Automatic methods for fish species identification in uncon-

strained environments assume that a fish has already been de-

tected in the image and a rough bounding box around the fish is

available. Detection of fish can be achieved by using simple frame

differencing with the background frame (Shortis et al., 2013), or

more sophisticated saliency (Walther et al., 2004) or foreground

modelling based methods (Spampinato et al., 2008; Nadarajan

et al., 2011). The primary reason for assuming a pre-detected fish

is the challenge involved in accurate fish detection in uncon-

strained conditions. Major problems are posed by the free swim-

ming direction of the fish, which can cause a huge variation in

the outline of the fish as projected on the two-dimensional image

captured by the camera. Due to the challenging nature of the

problem, fish species recognition in natural underwater environ-

ments has only been recently addressed.

One of the earliest efforts for free swimming fish species identifi-

cation in unconstrained settings was made by Rova et al. (2007).

They present a method for classifying similarly shaped fish based

on their texture alone in unconstrained environments. This ap-

proach is limited to applications where target fish species exhibit

rich texture. In Spampinato et al. (2010), a method was presented

to combine shape information with texture to classify fish in natu-

ral environments. The main challenge in using shape-based features

for fish classification in natural underwater environments is the

rich texture of seabed and reef scenes that make segmentation of

the fish from the background a very challenging problem. Besides,

due to the variations in perspective (determined by the pose of the

fish with respect to the camera), the outline of the fish in the image

exhibits much larger shape variation than the outline for only the

profile views of the fish. To reduce dependency on shape features,

recent work by Huang et al. (2015) uses a rich feature descriptor

employing colour, texture, and shape. Furthermore, separate fea-

tures are extracted from different parts of the fish (snout, tail,

body, etc.) to enhance their descriptive as well as discriminative

power. Owing to the limitations of feature-based approaches, re-

cently the approach of using complete fish images instead of ex-

plicit feature extraction was introduced in Hsiao et al. (2014). They

used complete fish images in a sparse representation based frame-

work to perform fish classification.

All of the previous studies, with the exception of Huang et al.

(2015), based their classification decision on a single image.

However, in the case of fish identification in the wild, there is al-

most always a video sequence in which the same fish appears in

multiple frames. Owing to the swimming direction and behaviour

of the fish, each of those frames does not necessarily carry the

same level of complexity for image classification. An illustration

of this phenomenon is shown in Figure 1. Therefore, to be able to

classify fish in their natural unconstrained environment, it is im-

portant to consider multiple recognition candidates for the same

fish. Such recognition candidates can be obtained by tracking the

detected fish across multiple frames. Hence, basing the final deci-

sion on a sequence or set of images has the potential to produce

more reliable results as compared to using a single instance of the

fish. A simple approach to exploit this redundancy was used by

Huang et al. (2015), who used voting on classification decisions

of individual instances to make the final decision. However, this

simple approach of majority voting has several limitations. First,

the individual classification decision is still based on a single im-

age. Second, the relationship between different images of the

same tracked sequence is not taken into consideration.

In the computer vision literature, a new paradigm of set-based

classification has recently emerged for object recognition (Hu

et al., 2012). The core idea of image set classification is to repre-

sent the object to be recognized as a set of images. It holds more

promise for accurate classification because image sets contain

more information compared to a single image. Within an image

set, individual images either share a common semantic
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relationship or complement the appearance variations of the ob-

ject. Finally, classification is performed for the whole set by using

some distance criteria between image sets. Defining novel repre-

sentations of image sets and useful distance measures to classify

an image set are active research topics in the computer vision

community. This study demonstrates how the recently emerging

techniques of image set-based classification can be used for fish

species recognition in unconstrained environments. We propose

a framework for this purpose based on state-of-the-art algorithms

for tracking (to create an image set from a single fish instance),

and image set classification (to identify the species of the fish).

The actual tracking and image set classification algorithms used

in this work can be replaced by other algorithms without the

need for modifying the presented framework. Furthermore, we

discuss implications for practical application of the presented

method for fish species recognition beyond the species examined

in this study.

Material and methods
To evaluate the effectiveness of image set classification for deter-

mining fish species, the image collection from ImageCLEF 2014

Fish Task (Spampinato et al., 2014) has been utilized. The dataset

contains pre-defined training and test splits for ten fish species.

Individual samples in the dataset are obtained from a wide variety

of videos containing diverse backgrounds and water conditions.

An automatic fish detection algorithm (Spampinato et al., 2008)

was used to detect fish in the videos, followed by manual identifi-

cation of fish species. Sample images of different fish species from

the dataset are shown in Figure 2.

Classification using image sets
Image set classification involves the comparison of: (i) a set of

images containing a single but unknown species of fish (in the

analysis that follows, the test set), with: (ii) multiple sets of im-

ages each containing a single known species of fish (the training

sets). The goal is to determine the closest match between a train-

ing set of images and a test set of images, in order to establish the

species of the test set. Importantly, both the test and training sets

contain multiple images of fish of a single species, encompassing

variation in image characteristics such as pose, lighting,

background, etc. This fact makes the technique particularly suit-

able for identifying fish in unconstrained environments.

We denote an individual set of images, whether test or train-

ing, by the notation X ¼ x1; x2; . . . ; xNf g; where each xi repre-

sents a single image of a fish, and the set contains N images in

total, all of a single species. In the case of test data sets the species

is unknown; in the case of training data sets it is known. When

the species of a specific fish in a given video frame is to be auto-

matically identified, the fish is tracked in the frames immediately

before and after the given frame. As a result of tracking, several

images of the fish are obtained making one test set. Individual

images in the test set represent different appearances of the fish as

a result of the swimming behaviour of the fish.

To develop the training sets, multiple images of each target spe-

cies across different conditions (background, viewing angle, body

deformations as a result of swimming motion, lighting, etc.) are re-

quired, and the species must be identified. Training data are made

of one or more sequences of images generated by tracking each fish

species of interest in the video sequences. In practice, a set of videos

are manually inspected by an operator, the species noted, and the

position (bounding box location, width, height, orientation) of

each fish marked. The training data are used by the employed ma-

chine learning algorithm (Hu et al., 2012) to build a model of the

appearance of these fish species. An illustration of the training and

test sets of a particular fish species is shown in Figure 3.

Fish tracking for image set construction
The goal of fish tracking in this study is to generate a set of test

image patches (rectangular regions in different frames containing

only the fish being tracked) that can be used in image set classifi-

cation to determine the species of the target fish (refer to Figure 4

for an example). Starting from a known position (bounding box

location, width, height, orientation), and possibly motion param-

eters (speed and acceleration) of a particular fish in a video frame,

the tracking method (also known simply as a tracker) will deter-

mine the state of the fish in the previous and the next frames.

This is done in a probabilistic way using a Bayesian sequential

sampling technique called particle filters. We refer the reader to

Arulampalam et al. (2001) for an overview of particle filters. It is

noteworthy to mention that particle filters have been used

Figure 1. A sample image set showing how individual images in the sequence pose a varying level of complexity for fish species recognition.
In several images, the orientation and position of the fish do not allow extraction of reliable shape features.
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extensively for general purpose object tracking in video sequences

as illustrated by Smeulders et al. (2014). In general, the particle

filter tracker aims to maintain an accurate estimate of the poste-

rior distribution of the current state of the tracked fish given all

the previous and the current observations of the fish, i.e. image

patches depicting how the view of the fish is evolving over time.

This allows a convenient framework for estimating and propagat-

ing the posterior regardless of the underlying distribution

through a sequence of prediction and update steps; thus, general-

izing the well-known Kalman filter. Details of this framework are

presented in Zhang et al. (2013, 2015) for further reading.

Image set representation
The first challenge after construction of an image set is how to ex-

tract and represent the information from an image set. The image

set constructed by tracking the fish across a large number of

frames consists of images containing different poses of the fish as

well as the changing background. To automatically discover com-

monalities between these individual images, subspace-based

methods are often used. A subspace effectively represents the

span of images that can be generated from a set of common basis

images Ui . For instance, one can consider the mean image li ,ob-

tained by averaging the pixel grey values at each location across

all images in an image set, as a reference. Any given image xi in

the image set can be constructed using the reference image li and

a weighted sum of the basis images Ui , that is xi ¼ li þ Uivi ,

where vi represents the weights. A set of basis images for a partic-

ular fish species can be generated by performing a mathematical

process called Principal Component Analysis (PCA) on a large set

of images depicting fish of that species appearing in different

poses, illumination conditions, and backgrounds (Abdi and

Williams, 2010). Basis images can be considered to be a set of

Figure 2. Sample images of various fish species (one per row) in ImageCLEF 2014 dataset.The fish species are (top to bottom): Acanthurus
nigrofuscus, Amphiprion clarkii, Chaetodon lunulatus, Chromis margaritifer, Dascyllus reticulatus, Hemigymnus fasciatus, Lutjanus fulvus,
Myripristis berndti, Neoniphon sammara, and Plectroglyphidodon dickii. Note the variations in images in terms of textured backgrounds,
viewing angles of the fish, fish swimming directions, shape deformations, partial occlusions, motion blur, and low image resolution.
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ingredients, derived from statistical analysis of many pictures of

the object (fish) of interest. Any fish image can be considered to

be a weighted combination of these basis images which appear as

light and dark areas that are arranged in a specific pattern. An ex-

ample of the basis images computed using PCA is shown in

Figure 5. An image set i is then represented jointly with the set

Xi of individual images as well as the basis images ðli; UiÞ com-

puted for that set.

Similarity computation between image sets
A simple way of computing similarity between two image sets is

to use a similarity measure (e.g. correlation between pixel values)

between two individual images and then employ it to compute an

average similarity between the training and test sets (for instance

by comparing each image in one set to each image in the other

set). This procedure is not only computationally expensive, but

also prone to errors due to noise and presence of outliers in the

training or test sets. Such outliers may appear, for example, as the

result of a tracking failure. A more elegant way of computing the

similarity is to construct two synthetic images, one from the train-

ing image set and the other from the test image set, such that the

synthetic images are as similar to each other as possible. An arbi-

trarily large number of synthetic images can be constructed from

a given basis ðli; UiÞ, using the relationship xi ¼ li þ Uivi by

varying the weights vi of the basis. Hence, an optimization algo-

rithm is applied to minimize the difference D xi; x j

� �
between the

reconstructed image xi from the training image set and x j from

the test image set. Numerous image difference measures have

been reported in the literature (Mahmood and Khan, 2012) and

any of these measures can be used to compute the difference D:
Given a test image set, its difference is computed from all training

image sets. The test image set is then assigned the label (species

name) of the training image set that has the smallest difference

from it. This approach is commonly known as one-nearest-neigh-

bour classification (Cover and Hart, 1967) in the machine learn-

ing literature.

Since the space of all images that can be created using a given

basis is very large, it is possible to construct two images with a

very small difference between them even for two image sets of dif-

ferent fish species, which adversely affects the classification per-

formance. Hence, it is desirable during the construction of the

images to restrict them to have an appearance visually similar to

the samples in the corresponding image set. This objective can be

achieved by constructing the synthetic image using a linear com-

bination of the images in the image set, that is x ¼
PN

n¼1 anxn or

written in the matrix form x ¼ Xa, where a is the weight vector.

Hence, a joint optimization is performed (Hu et al., 2012) to

Figure 3. An illustration of training and test image sets for the species Hemigymnus fasciatus. Note that the training set (a) contains a large
variety of pose and illumination variations. The test set (b) contains the sequence of images obtained by tracking the target fish across
multiple frames. All individual images in the training as well as test sets are resized to a fixed dimension (32 X 32 in this case) for a unified
image set representation.

Figure 4. A visual example of a fish being tracked within an uncontrolled environment using the method proposed in Zhang et al. (2015).
The detected bounding boxes are the current best states of the fish in each of the video frames. These image patches, indicated by the
overlaid rectangle in each frame, can subsequently be used to construct the test set for the image set classification method outlined in
section Classification using image sets.
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construct the images xi and x j from the training image set basis

ðli ; UiÞ and the test image set basis ðlj ; UjÞ respectively; such

that the difference D xi; x j

� �
is minimized while keeping the con-

struced images close to their corresponding image set samples Xi

and Xj . The outcome of the optimization algorithm is the opti-

mized values of the basis image weights (vi and vj) and the image

sample weight vectors (a and bÞ for the training and test image

sets, respectively. Hu et al. (2012) have demonstrated that im-

proved results are achieved when the weight vectors a and b are

sparse, that is most of their elements are zero. A sparse weight

vector allows the optimization algorithm to choose only a few

samples from the corresponding image sets, allowing it to effec-

tively ignore outliers and non-representative samples samples

that might occur due to the errors made by the tracking

algorithm. Hence a sparsity constraint is also enforced in the op-

timization algorithm such that the weight vectors (a and bÞ re-

turned by the algorithm are sparse, which makes the algorithm

robust to tracking failures (see Hu et al., 2012 for details). An il-

lustration of the construction of sparsely approximated samples

from training and test image sets and the corresponding optimi-

zation criteria is shown in Figure 6. Note that the simultaneous

optimization of the test image set with each of the training image

sets has to be done when classifying the test image set. Hence, the

training phase of the presented algorithm only involves collecting

the labelled training samples and constructing the image set mod-

els for all training image sets. It does not involve any optimization

during the training stage, which is an inherent advantage of using

a nearest neighbour-based classification approach. On the flip

Figure 6. An illustration of sparsely approximating new images in the training and test set using the corresponding image set models with
the aim of finding the most similar images in the two sets.

Figure 5. An illustration of mean and basis images for the training (left) and test (right) image sets shown in Figure 3. The mean image is
depicted first, followed by individual basis computed using Principal Component Analysis. Note that the number of basis images is larger for
the training set as compared to the test set to cater for the larger diversity of images in the training set.
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side, the testing phase is more computationally involved as the

test image set has to be jointly optimized with all training image

sets to find its closest matching training set.

Performance evaluation protocol
Both the training and test images in the ImageCLEF 2014 Fish

Task data contain image sequences where multiple instances of

the same fish are present. Hence, each of these image sequences

can be used as a single image set. During testing, one needs to la-

bel each tracked sequence independently. Therefore, test image

sets were created based on grouping tracked image patches of a

single fish into a single image set. A similar approach could also

be used to create training image sets. The drawback of this ap-

proach is that modeling of image sets using a few samples is not

as accurate as modeling the set with a large number of samples.

Therefore, all training images of a particular fish species were

considered as a single training image set for that species. The ad-

vantage of this approach is that the large number of images con-

tain a richer set of variations that are more effectively encoded in

the corresponding image set representation.

The accuracy of the presented algorithm is measured by com-

paring the predicted label of an image set with its true, manually

determined label. If both labels match, the image set is considered

to be correctly classified. Otherwise, the classification decision is

considered incorrect. Classification accuracy is defined as the per-

centage of the correctly classified image sets with respect to the

total number of test image sets.

Results
For effective modelling of image sets, test sets having less than

five images were ignored in the first experiment. It is a reasonable

assumption from a practical perspective that most transits of the

fish across the field of view would generate larger sized sets. The

results of image set classification on the test sets containing five

or more samples are presented in Table 1. For six species, 100%

recognition results were obtained. It is important to note that the

images were directly used in image set modelling, without extrac-

tion of any shape, colour, or texture features. The dataset con-

tains a wide variety of backgrounds, lighting conditions, as well as

fish orientations. Despite such large variations, an overall recog-

nition rate of 94.6% was obtained. Table 2 provides a detailed

analysis of the failure cases using a confusion matrix of true clas-

ses versus predicted classes. It is interesting to note that a number

of image set instances of Hemigymnus fasciatus were mis-

classified as other fish species. A closer inspection of the results

revealed that those cases arose when the illumination was quite

poor and hence the zebra-striped pattern of the species was not

visible. Therefore, the correct match to the training set of H. fas-

ciatus could not be established.

Further experiments were performed to study the effect of the

number of images in the test set on the recognition performance.

To analyse this effect, the experiment was repeated using test set

size thresholds in the range from 2 to 10. For each experiment, all

test image sets that had a size less than the chosen threshold were

discarded and the corresponding recognition accuracywas com-

puted. The cumulative results for all fish species are plotted in

Figure 7. The graph shows the accuracy both at the set level and

individual image level. The accuracy at the image level is deter-

mined by counting all images in the set as correctly labelled if the

decision at the set level is right, and as mis-classified otherwise.

Classification accuracy is then computed as the percentage of cor-

rectly classified images among all test images. Hence in image

level classification, mis-classifying a larger sized image set is pe-

nalized more than mis-classifying a smaller sized image set. Note

that image level accuracy is higher than set level accuracy indicat-

ing that most mis-classifications happened for small sized test im-

age sets. In practice, the method will deliver improved

classification accuracy for higher frame rate videos as more image

patches can be obtained for the same fish as a result of tracking.

Table 1. Summary statistics of training and test sets, and the
accuracy achieved by the classifier.

Species
Training
images

Test
images

Test
sets

Classification
accuracy (%)

Acanthurus nigrofuscus 2511 725 32 90.6
Amphiprion clarkii 2985 878 45 100.0
Chaetodon lunulatus 2494 917 29 100.0
Chromis margaritifer 3282 371 17 100.0
Dascyllus reticulatus 3196 681 14 100.0
Hemigymnus fasciatus 2224 852 47 83.0
Lutjanus fulvus 720 146 07 71.4
Myripristis berndti 2554 840 33 90.9
Neoniphon sammara 2019 969 58 100.0
Plectroglyphidodon dickii 2456 577 16 100.0

The total number of image samples for each fish species in the training and
test partitions is listed. In addition, the number of independent test sets,
comprised of at least five images of a tracked fish, is listed. The partition of
the data into training and test sets has been kept identical as in the original
ImageCLEF 2014 Fish Task dataset for easier reproducibility and comparison
of results. Note that our method achieves 100% recognition rate for six fish
species.

Table 2. Confusion matrix indicating the number of correctly classified sets for each fish species and mis-classification errors made by the
algorithm.

Species
Acanthurus
nigrofuscus

Amphiprion
clarkii

Chaetodon
lunulatus

Chromis
margaritifer

Dascyllus
reticulatus

Hemigymnus
fasciatus

Lutjanus
fulvus

Myripristis
berndti

Neoniphon
sammara

Plectroglyphidodon
dickii

Acanthurus nigrofuscus 29 1 2
Amphiprion clarkii 45
Chaetodon lunulatus 29
Chromis margaritifer 17
Dascyllus reticulatus 14
Hemigymnus fasciatus 2 1 2 1 39 2
Lutjanus fulvus 5 2
Myripristis berndti 1 30 2
Neoniphon sammara 58
Plectroglyphidodon dickii 16

The rows represent the human labelled species, whereas the columns indicate the computer labelled species of the fish.
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Discussion
Underwater video systems have shown to be cost effective, acces-

sible, and provide a means of repeatable sampling of fish popula-

tions (Murphy and Jenkins, 2010). While manual processing of

the resulting imagery decreases the cost effectiveness and avail-

ability of numerical data after recording, use of computer vision

algorithms to automate species identification can significantly

improve the efficiency of analysis of captured imagery (MacLeod

et al., 2010). Most of the existing methods for automated fish spe-

cies recognition (e.g. Lee et al., 2008; Larsen et al., 2009;

Spampinato et al., 2010) rely on accurate delineation of fish

boundary to extract shape features. This not only limits the appli-

cability of those methods to cases where the background is easily

separable, but also constrains them to identify only profile views

of the fish. This study has demonstrated how modelling of multi-

ple fish images directly can yield competitive recognition rates

without the need to do explicit feature extraction, which becomes

very challenging for free-swimming fish in unconstrained envi-

ronments. Due to these characteristics, the method has neither of

the above-mentioned limitations. The only prior work that used

this concept for fish identification is Hsiao et al. (2014). A sparse

representation-based framework was used and was able to achieve

a species recognition rate of 81.8%, which is much lower than the

results reported in this paper. Note that the dataset used in this

study originates from the Fish4Knowledge project, which was

also used by Hsiao et al. (2014). However, the sample set is differ-

ent as the test images used by Hsiao et al. are not publicly avail-

able. In order to compare the performance of the image set

classification technique to that used in Hsiao et al. (2014), we im-

plemented their method and trained and tested it on the same

data used in this study. An extensive parameter tuning of their

method was conducted to optimize its performance on the train-

ing partition of ImageCLEF 2014 Fish Task dataset. The opti-

mized algorithm was able to achieve an accuracy of 84.04% on

the test set, which is a threefold increase in error rate as compared

to the presented method.

Blanc et al. (2014) present another study utilizing the

ImageCLEF 2014 Fish Task data, where videos have been used to

first detect and then classify the fish species using fish species-

dependent features trained using a Support Vector Machine clas-

sifier. They report an average precision and recall of 55% and

50%, respectively. The relatively lower performance is due to the

joint process of fish detection and species recognition. Hence, a

direct comparison with these approaches cannot be made. Direct

comparison is further complicated because this study uses multi-

ple fish images to make a single classification decision, while prior

works based their classification decisions on single images.

The presented method was able to correctly identify fish spe-

cies for cases where fish are imaged against the sea floor or coral

reefs that have a rich texture, making accurate segmentation of

fish an extremely challenging task. A major advantage of the pre-

sented method is that it is not based on species-dependent feature

extraction, and hence can be easily applied to any fish species in

general. Moreover, due to image set modelling, fish instances that

are not in profile view can also be correctly classified. One disad-

vantage of the method as compared to the state-of-the-art is that

multiple images of the same instance are required to make a deci-

sion about the species. However, a fish is usually visible in the

field of view of the camera for at least five frames thereby making

this issue practically insignificant.

Experiments on the public dataset yielded 100% recognition

rates for six fish species, namely Amphiprion clarkii, Chaetodon

lunulatus, Chromis margaritifer, Dascyllus reticulatus, Neoniphon

sammara, and Plectroglyphidodon dickii. The recognition rates

were the lowest for the species Hemigymnus fasciatus and

Lutjanus fulvus. A closer investigation of the failure cases for

Hemigymnus fasciatus revealed that in most cases, the visbility of

the fish was very poor due to low levels of lighting, making the

zebra-like stripes barely visible. The poor results for Lutjanus ful-

vus appears to be a combination of the small number of image

sets and the relatively featureless appearance of this species.

For the practical application of the presented image set based

method, several considerations need to be made. First, the train-

ing image set for species of interest has to be collected. The train-

ing images should comprehensively capture variation in fish

shape due to swimming motion and viewing angle of the camera,

as well as image degradations that are expected to be encountered

in a particular scenario. A few hundred representative images of

each species of interest are usually sufficient to achieve good ac-

curacy. This factor was tested using the ImageCLEF Fish Task

data by artificially reducing the size of the training data. A train-

ing set built from 200 randomly selected image samples per fish

species yielded an accuracy of 88.2%, which is already signifi-

cantly higher than existing methods.

In set-based classification, the commonly used paradigm is to

make individual training sets for each capture instance (Hu et al.,

2012). For instance, if for a particular object several videos are

available during training, each video constitutes a separate train-

ing set for that object; effectively constituting a single sample for

nearest neighbour classification. This is in line with the tradi-

tional nearest neighbour classification scenario where several

training samples are available for each class. However, in our ex-

periments with fish species identification, improved results were

achieved by collecting all training samples of a species into a sin-

gle training image set for that species. This can be attributed to

two factors. First, the larger amount of data in the training image

set allows the construction of a more powerful and representative
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Figure 7. The effect of test set size on recognition rate. Note that
the larger the number of images in a given set, the more accurate
model can generally be obtained from that set. The results indicate
that the recognition accuracy saturates as the number of images in
the set increases to six.
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model of that species. Since this model is jointly optimized with

the test image set, a comprehensive model encompassing a larger

image diversity yields improved performance. Second, in several

cases, a fish simply swims across the field of view of the camera

into a particular direction. Therefore, the variation in the shape

of the fish in different images of the image set is minimal, limiting

the model variance, and adversely affecting system performance.

To collect and label training images, the use of a fish detection

approach (such as Spampinato et al., 2008) that can segment out

fish from the given imagery is recommended. Once the seg-

mented (but unlabelled) images are obtained, they can be manu-

ally grouped according to their species using any file

manipulation program (like Microsoft Windows Explorer).

Using this approach, we were able to manually classify about

7000 samples in the ImageCLEF test data in <3 h.

A MATLAB implementation using an Intel Core i7 Machine

(2.6 GHz, 16GB RAM, 512 GB SSD) required �20 min to process

all test imagery, resulting in an average classification time of <4 s

per test image set. It is interesting to note that the computation

time as well as the accuracy decreases as the number of samples in

the training set are reduced. To test this a training set was gener-

ated using approximately one-tenth of the 20 000 available images

from the full ImageCLEF 2014 Fish Task training data. Using a

training set built from 200 randomly chosen samples from each of

the ten fish species reduced the average computation time from 4 s

to 240 ms per test image set. This improvement in computation

time comes at the cost of a reduction in accuracy from 95% to

88%. In many time-critical applications this could be a reasonable

compromise to make, keeping in view that the achieved accuracy is

still improved over that of existing single-image-based methods.

Despite the high accuracy of the presented image set-based ap-

proach under challenging conditions, it has certain limitations.

One problem inherent with the set-based approach is the depen-

dence of accuracy on image set size—the larger the set size, the

higher the accuracy. In applications where continuous monitor-

ing has to be done for a long period of time, video frame rates are

usually kept low to cater for the limited storage and transmission

capacity. At low frame rates, fish tracking becomes particularly

challenging and hence it might become difficult to automatically

obtain a reasonably sized image set. Furthermore, the computa-

tional complexity of the presented approach is higher than that of

most single-image classification methods. This is due to the joint

optimization of each test set with the entire training set during

classification. However, it should be noted that the method pre-

sented is able to classify all images in the set simultaneously.

Hence, for an average image set size of ten samples, a single image

classification algorithm that is ten times faster than the presented

method would still take the same overall computation time. Due

to this characteristic, the computational disadvantage gets largely

compensated for in the case of high frame rate videos that natu-

rally yield larger image set sizes.

There are several directions in which the presented method

can be improved. A particularly promising direction for future re-

search would be to incorporate active learning into the presented

framework. Active learning (Settles, 2010) is a special case of

semi-supervised machine learning in which a learning algorithm

is able to interactively learn from user corrections to obtain

higher accuracy at new data points. Note that the algorithm pre-

sented is based on nearest neighbour classification which is quite

suitable for use in active learning scenarios. Another interesting

direction could be to explore generation of image sets using

synthetic, computer-generated models (Rabasse et al., 2008) of

fish movement and image degradations. Based on the synthetic

generation of image sets, it might be possible to just use a single

image as a seed image and generate the whole training image set

synthetically. Yet another possibility to apply the approach effec-

tively on low frame rate videos would be to use unsupervised im-

age clustering techniques to group together fish instances based

on image similarity measures. This could compensate for tracking

failures in challenging scenarios and create reasonably large-sized

image sets to achieve higher accuracy.

Conclusions
This article has presented an image set-based approach for fish

species identification in unconstrained environments. The overall

classification accuracy for all ten species studied in this work was

around 95%, which shows strong potential for application of im-

age set-based fish classification methods in practical applications.

Accordingly, the presented method shows huge potential for fish

identification from routinely captured video data where fish

tracking provides a natural mechanism to construct image sets.

Once the image training sets are established, this technique can

provide a very high level of automation of species recognition in

video sequences acquired to monitor species abundance or bio-

mass. The results of the classification can be used as an effective

and accurate tool to provide decision support to fisheries and

marine park managers for stock assessment and species

conservation.
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