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ABSTRACT

Most of the widely used pattern classification algorithms, such as Support Vector Machines (SVM), are
sensitive to the presence of irrelevant or redundant features in the training data. Automatic feature
selection algorithms aim at selecting a subset of features present in a given dataset so that the achieved
accuracy of the following classifier can be maximized. Feature selection algorithms are generally
categorized into two broad categories: algorithms that do not take the following classifier into account
(the filter approaches), and algorithms that evaluate the following classifier for each considered feature
subset (the wrapper approaches). Filter approaches are typically faster, but wrapper approaches deliver a
higher performance. In this paper, we present the algorithm - Predictive Forward Selection - based on
the widely used wrapper approach forward selection. Using ideas from meta-learning, the number of
required evaluations of the target classifier is reduced by using experience knowledge gained during past
feature selection runs on other datasets. We have evaluated our approach on 59 real-world datasets with
a focus on SVM as the target classifier. We present comparisons with state-of-the-art wrapper and filter
approaches as well as one embedded method for SVM according to accuracy and run-time. The results
show that the presented method reaches the accuracy of traditional wrapper approaches requiring
significantly less evaluations of the target algorithm. Moreover, our method achieves statistically

significant better results than the filter approaches as well as the embedded method.

© 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Pattern recognition is often defined as the task of assigning a
label to a given input data instance described by a set of measured
or calculated values called features. If the task is to assign a label
from a set of pre-defined labels, it is termed as classification.
Pattern classification has a wide range of applications ranging from
Astronomy to Molecular Biology and DNA sequence analysis.
Owing to the broad applications base, a large number of pattern
classification algorithms based on different theoretical founda-
tions have been proposed in the literature. The no-free-lunch
theorem [41] tells us that there is no pattern classification
algorithm that can be uniformly better than all other algorithms
on each problem instance. However, Support Vector Machines
(SVM) [17] have shown outstanding performance on many widely
accepted benchmark datasets originating from different domains,
making them one of the most favorite pattern classification
algorithms today. One common limitation of many pattern classi-
fication algorithms, including SVMs, is that their performance
degrades if the feature vector contains irrelevant or redundant
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features [40]. For most of the pattern classification problems, many
potentially good features are extracted during data collection. The
actual usefulness of each extracted feature is not known at that
stage. Automatic feature selection methods are usually used to
reduce the number of features to be fed to the following pattern
classification method for training. Removing irrelevant ore redun-
dant features not only improves overall classification accuracy, but
also reduces the dimensionality of the data thereby shortening the
training and application time of the learning scheme. Furthermore,
shorter feature vectors help the classifier in better coping with the
curse of dimensionality.

Two general approaches for automatic feature selection are
filter methods and wrapper methods [8,24]. Filter methods select
features based on their discriminative power according to the
target variable without taking the actual learning scheme into
account. Measures based on correlation or information theory are
usually used to determine the quality of a feature [21,33]. The top-
ranked features according to the used measure construct the final
set of features. The number of best features used for learning is a
typical parameter of filter approaches. Therefore, the best value is
often empirically found by examining multiple values.

Since filter approaches typically treat each feature indepen-
dently, they are not able to remove redundant features.
The minimum redundancy-maximum relevance (MRMR) feature
selection method tries to select features that are maximally
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relevant to the target variable but also minimally redundant
among themselves [28]. The Fast Correlation Based Filter (FCBF)
also tries to remove irrelevant and redundant features [42].
Features with a symmetrical uncertainty according to its class
below a given threshold are removed because they are considered
as irrelevant. Additionally, only features that do not have any
approximate Markov blanket in the current set of remaining
features are kept in order to reduce redundancy. Mao [26]
presented a filter approach by selecting features in an orthogonal
space. Different class separability measures are used to select the
most promising features.

Although filter approaches are typically fast, one of their
weaknesses is that the actual target classification algorithm is
not taken into consideration. Therefore, the same feature subset is
selected regardless of the following classification algorithm being
used. Different classification algorithms have different degrees of
sensitivity to spurious features. Hence, it is useful to take the
target classifier into account while doing feature selection to
optimize the true objective function (i.e. the accuracy of the
classifier on new data). To solve this problem, wrapper approaches
involve the target algorithm in the feature selection process [24].
The quality of a feature subset is determined by evaluating the
actual classifier using the selected feature subset (i.e. training the
classifier on the subset of the training data containing the selected
features only, and testing it on the similarly extracted subset of
validation data). This has the advantage of including the target
classification algorithm into the feature selection procedure which
leads to the most suitable feature subset for the given classifier.
The sequence and the number of feature set evaluations are
specified by the actual search strategy used for feature selection.
The simplest strategy is a brute-force approach, that evaluates all
possible subsets of features. This is computationally very expen-
sive due to its combinatorial complexity and becomes infeasible
when a large number of features are involved.

Forward selection is a frequently used wrapper approach. It
starts with an empty set of features and iteratively adds unused
features. In the first iteration, all features are evaluated individu-
ally. During each following iteration, one feature is added to the
feature subsets of the previous iteration and the newly created
feature subsets are evaluated again. In order to reduce the number
of evaluations, only the k best feature subsets are kept after each
iteration. If k is low, the run-time decreases, but the algorithm
might miss better feature subsets. One iteration of forward
selection is illustrated in Fig. 1: Starting with two feature subsets
(k=2) of size three, all possible subsets of size four are evaluated.
Afterwards, the two best subsets are kept as the basis for the next
iteration. A stopping criterion that is often used in forward
selection is that the algorithm stops if the accuracy of the
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Fig. 1. One iteration of forward selection: Each unused feature before the start of
current iteration is added to the previously selected feature subsets. All resulting
subsets are evaluated by applying the learner and the k best subsets are used as the
basis for the next iteration (k=2 in this illustration).

target algorithm using the best selected subset does not improve
in m consecutive iterations.

Since forward selection is a greedy method (only keeps the k
best feature subsets from the previous iteration), it does not
guarantee to find the optimal feature subset. The method back-
ward elimination works analogically, but starts with the complete
set of features and removes one feature in each iteration.

In this paper, we present a novel algorithm that significantly
reduces the time of the wrapper method forward selection without
a statistical significant decrease of accuracy. Knowledge about
previous feature selection runs of other datasets is used within a
novel estimation step introduced into forward selection. Although,
the presented method is independent of the target classification
algorithm, we chose the SVM classifier [17] for experiments in this
work. SVM is a non-linear maximum margin classifier using a
kernel function. A typical kernel is the radial basis function (RBF).
The performance of an RBF-kernal SVM heavily depends on the
values of its sensitive parameter C and y. The parameter C of SVMs
controls the trade-off between minimizing the number of wrongly
labeled training samples and maximizing the margin, whereas the
parameter y controls the width of the RBF kernel. A more detailed
description of the SVM classifier including a discussion on its
parameters can be found in [14]. The choice of using SVMs as the
target classifier is not only motivated by the wide-spread use of
the SVM classifier, but also due to computationally demanding
training of SVMs.

Besides the two general categories of wrapper and filter
approaches, embedded methods for feature selection have been
proposed that perform feature selection within the classifier.
These approaches are specific to the particular classification
algorithm that is modified to inherently perform feature selection.
It should be mentioned here that some classification algorithms
have feature selection built in their original algorithm. One
example for such classifiers are decision trees, such as CART [13]
or Random Forests [12]. Although SVMs do not inherently perform
feature selection, embedded methods for SVMs have been pro-
posed. Penalized SVMs use an additional penalty term within the
optimization step for selecting the features. Different definitions of
this penalty term have been investigated. The L1-penalty was
proposed by Bradley and Mangasarian [9], which is applicable to
linear kernels only. Zhang et al. [43] combined the smoothly
clipped absolute deviation (SCAD) penalty with the SVM classifier.
A mixture of a wrapper and an embedded approach was presented
by Weston et al. [40] by optimizing the feature weights using a
gradient descent method for SVMs. However, embedded methods
are classifier specific and cannot directly adapted to any other
classifier, which is one of their biggest drawbacks.

The rest of this paper is structured as follows. First, we explain
the proposed approach in detail in Section 2. The evaluation of the
method is given in Section 3. The final section concludes the paper
with a summary.

2. Predictive feature selection

Consider a dataset D consisting of N samples D= (X1,
X,..., X} and p features such that each sample X; e RP. Let t
be the target variable that needs to be predicted when a new
sample X arrives. For regression problems, t is considered a
continuous variable whereas for classification problems t is dis-
crete. The goal of feature selection is to find from the p-dimen-
sional observation space RP, a subspace of q features (q <p) RY,
that maximized the prediction accuracy for the target variable t.
Since the total number of subspaces is 2” — 1, exhaustively search-
ing for the optimal subspace becomes computationally infeasible
even for moderate values of p.
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Let D, represent a subset of the original dataset D such that it
contains the same number of samples Dy = {71,?2, ...,7,\,}, but
each sample is reduced to g-dimensions: ;e R? and R? < R,
Forward selection starts in the first iteration with g=1 and applies
the learning scheme /" that maps the input feature vector 7,- to
the output value t;:

Iy, eRPstieR (N

for each candidate data subset D,. For a classification function 7,
the output value t; belongs to a predefined set of classes
{w1, w2, ...,wc). Let Pp, represent the performance (classification
accuracy) achieved by the learning scheme using the data subset
D,. For the next iteration, only those k data subsets are kept that
lead to the highest accuracy using the learning algorithm /.

Since in each iteration all candidate data subsets are evaluated,
forward selection requires repeated application of the learning
algorithm. The performance achieved by most of the learning
algorithms (including SVMs) on a given dataset highly depends on
the specific values of their parameters used during training.
Therefore, to achieve the best possible results, sensitive para-
meters of these algorithms need to be optimized on each candi-
date data subset. For instance, a common strategy employed while
training SVMs on a given dataset is to do a search for its sensitive
parameters y and C over a 15 x 15 grid [22]. This leads to a huge
computational demand from the feature selection process.

The key idea behind our work is to avoid the computationally
expensive step of training the target classifier on all candidate data
subsets. Since the main aim of training the classifier on a data
subset Dy is to find its accuracy Pp, on D,, we propose to predict
the accuracy Pp, of the classifier on D instead of computing it.
This prediction is done by computing different meta-features of D,
that characterize intrinsic properties of the dataset itself (a brief
discussion of different meta-features used in this work is given in
Section 2.1). Hence, all candidate data subsets in a particular
iteration can be ranked based on the predicted accuracy of the
target classifier. Finally, only a certain fraction of the top-ranked
data subsets are actually used to train and subsequently compute
the accuracy of the classifier.

Fig. 2 illustrates one iteration of the presented approach.
The newly introduced step of quality estimation (i.e. accuracy
prediction) is performed during each iteration and controls which
feature set will actually be evaluated. Under the assumption that
predicting the quality is much faster than evaluating the
target algorithm, the run-time of the overall forward selection
can be decreased dramatically. The number of feature sets that are
actually evaluated is a parameter of the proposed method. Either a
fixed number of feature sets or a fraction of all subsets can be used.
We prefer to use a certain fraction of the candidate data subsets
since this is more applicable for differently sized datasets. During
the later evaluation, we refer to this parameter as the evaluation
rate 7. Since the quality estimation might not deliver perfect
results, this parameter controls the trade-off between speed-up
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Fig. 2. One iteration of the presented approach: only the most promising feature
subsets are evaluated, depending on the quality estimated in a prior step.

and accuracy. If the estimation would deliver a correct ordering of
the feature subsets, no actual evaluation would be necessary. If the
parameter is set to 100%, the results are equivalent to the
traditional forward selection since all candidate subsets are eval-
uated regardless of the quality estimation.

2.1. Meta-features

Different measures can be used to extract certain character-
istics of a dataset. Each measure calculates one value describing
one property of the whole dataset. One simple example of such a
measure is the number of classes contained in a dataset. Multiple
measures can be combined to form a feature vector that provides a
compact but meaningful characterization of the dataset. Since this
vector is computed from the features of the dataset and it is itself a
feature vector as well, it is called a meta-feature vector of the
dataset. The properties of a dataset that are represented by the
individual elements of the meta-feature vector are called meta-
features. The actual measures included into the meta-feature
vector can be arbitrary. There is no fixed definition of the meta-
feature vector since the choice of features to be used strongly
depends on their application in a subsequent learning
scheme (often termed as meta-learning). A proper choice of
meta-features is a crucial point in developing meta-learning
systems. Therefore, several types of meta-features using different
theoretical foundations have been proposed in the literature.
Based on their underlying foundations, meta-features can be
categorized into five groups: simple, statistical, information-theo-
retic, model-based, and landmarking. Here we provide a brief
overview about each of these meta-feature types to give the reader
a better understanding of what constitutes the meta-feature space.

2.1.1. Simple meta-features

Simple meta-features are the most straightforward character-
istics of a dataset. Examples of such features are the number of
samples, the number of features, or the number of classes [23,27].
Additionally, simple ratios such as the dimensionality of a dataset
defined by the division of the number of samples by the number of
features or the ratio of numerical/nominal features might be
calculated. Due to their simplicity, there is almost no computa-
tional effort calculating them, but their descriptive power is very
limited as well. However, in combination with more sophisticated
meta-features, simple measures can improve the performance of a
meta-learning method.

2.1.2. Statistical meta-features

Statistical meta-features use measures and analysis methods
from statistics. The single features of a dataset are treated as
probability distributions and well known statistical measures are
applied. Two frequently used examples of this group of meta-
features are the kurtosis and skewness [27,19]. The kurtosis
measures the “peakedness” of a probability distribution. The
skewness is a measure of the asymmetry of the probability
distribution. Other commonly used statistical measures are the
standard deviation ratio, the correlation between pairs of features,
the canonical correlation for the best single combination of
features, and the normalized first eigenvalue of the canonical
discriminant matrix [27]. Statistical meta-features are computa-
tionally more intensive as compared to simple meta-features.
Especially the computation of measures that are defined between
pairs of features, such as the correlation, can be very time
consuming. Since they are computed for each possible feature
pair, their complexity grows quadratically with the number of
features. Therefore, such measures might not be suitable for
datasets with a very high number of features.
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2.1.3. Information-theoretic meta-features

Information-theoretic meta-features are based on the
Shannon-entropy for a discrete random variable. The entropy is a
measure for the average uncertainty of the random variable and it
is calculated for each feature and the class label. Castiello et al. [15]
propose to further normalize these entropy values by dividing
them by the logarithm of the number of samples. Often used
meta-features based on entropy are the joint entropy and the
mutual information of the class label and a feature as well as the
equivalent number of attributes and the signal-to-noise ratio
[27.34].

2.1.4. Model-based meta-features

Model-based meta-features do not use well-known measures
such as statistical tests or entropy-measures but features particu-
larly developed for meta-learning. Features are extracted using a
two-stage approach. First, a decision tree is trained on the dataset.
Then, different properties of the created tree are used as meta-
features [5,29]. Bensusan et al. [5] proposed simple properties
such as the ratio of the number of nodes to the number of features,
the ratio of the number of nodes to the number of samples but also
more complex characteristics such as measures for the shape,
homogeneity, imbalance, and internal symmetry of the decision
tree. Peng et al. [29] also used the maximum, minimum, mean, and
standard deviation of different measures, such as the number of
nodes at a level, the length of the branches, and the number of
occurrences of attributes in the tree.

2.1.5. Landmarking meta-features

In landmarking, a simple and computationally light learning
algorithm is training on the target dataset. The resulting perfor-
mance of the learning algorithm is directly used as a meta-feature.
Such a simple learner is typically called a landmarker. Algorithms
often applied as landmarkers are Naive Bayes, Decision Nodes, and
Linear Discriminant [30,6]. Decision Nodes split the data using one
feature only and can be viewed as a decision tree containing just
one split. The splits of the Decision Nodes are created according to
some splitting criterion, e.g., the information gain. The accuracies
of the best and the worst node according to the splitting criterion
are used as meta-features as well the accuracy of a random node
and the average accuracy of all decision nodes.

2.2. Accuracy prediction

Several methods have been proposed in the literature for
classifier selection or accuracy estimation for a given dataset.
These can be broadly categorized into three main groups:

1. Predicting the best classifier for the given dataset [4,1].

2. Predicting a ranked list of classifiers for the given dataset
[10,11,38].

3. Predicting the accuracy of a particular classifier on the given
dataset [20,37,25,7,32].

Among these methods, predicting the accuracy of the target
classifier [32] for the given dataset D, can be directly used to get
the accuracy estimate 75111. In a traditional meta-learning scenario,
the goal is to find the best classifier for a given dataset. We use a
different view here. In our scenario, we do not want to select the
best algorithm for a given dataset, but to select the best data subset
f)q for a given target algorithm. Keeping the target algorithm fixed
(SVM in this work), we use a regression model that is able to
predict the accuracy of the target algorithm for the data subsets.
The creation of the regression model is based on the experience
knowledge gathered from previous feature selection runs of other
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Fig. 3. The meta-features and the accuracy of the datasets derived from datasets A
and B construct a meta-dataset that is used to create a regression model (top). The
model is then applied on the meta-features of the datasets derived from a new
dataset X during the feature selection process (bottom).

1 Derived X |—>| Meta-features X,

datasets. Since multiple feature subsets are evaluated during past
feature selection runs, the corresponding data subsets including
the achieved accuracies are used as the knowledge base.

A dataset containing only a subset of features has different
characteristics than the corresponding original dataset containing
all available features. Meta-features are able to describe these
characteristics of a dataset and, therefore, are used to represent
the data subsets. A regression model learns the relation between
these characteristics of (derived) datasets and their accuracy
according to a classifier. Note that although the dimensionality
of each data subset might be different, the same meta-features are
extracted from each of them. Let m be the dimensionality of the
meta-feature space, such that each data subset Dy is represented as
a single vector d 4 € R™ in that meta-feature space. This property
enables us to train a regression model g in the m-dimensional
meta-feature space R™, independent of the dimensionality of the
original dataset D.

To estimate the quality of a feature subset, the regression
fg}nction I'; is applied to the m-dimensional meta-feature vector
d 4 representing the following data subset:

— N
Ig:dgeR"—Pp, eR (2)

The regression approach is illustrated in Fig. 3, including
training (top) and application (bottom): For each of the two
known datasets A and B, three data subsets are derived by using
certain subsets of features. The meta-features of these derived
datasets as well as the accuracies achieved by the target classifier
construct a meta-dataset. Within this dataset, one instance
describes one data subset and the corresponding accuracy of the
target classifier. Using the accuracy as the target variable, a
regression learner is used to learn a model. This training phase
is independent of the feature selection process for a new dataset
and the created model can be used for selecting features of any
new dataset. Furthermore, since no explicit knowledge about the
feature selection process is required in the feature subset quality
estimation stage, the method can be easily applied in other
sequential-search-based methods such as backward elimination.

2.3. Application example

In this section, we describe different steps that need to be taken
for practical application of our proposed method for feature
selection. Note that, since this method is knowledge-based, data
from previous feature selection experiments is needed to train the
system. In practice, such a knowledge-base can either be built
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from scratch using public datasets (e.g. those from the UCI
repository) or a public knowledge-base can be directly used.’
To build the knowledge-base, the following steps are applied:

Collect multiple datasets D',D?,...,D.
For each individual dataset D':
For each candidate feature set of D':
o Extract data subset D, containing only the class label
and the candidate features.
o Train the target classifier on Dy and compute its
accuracy Pp, using cross-validation.

o Compute m meta-features E)q e R™ of the data subset
Dy such that the whole dataset is represented as a single
point in the m-dimensional meta-feature space.

e Store accuracy of the target classifier Pp, and the

—
computed meta-features d 4 as one record in meta-
dataset.

—
Train a regression algorithm on the meta-dataset using d 4
as input features and Pp, as the target variable.

After a regression model has been trained, it can be readily
used within the forward selection to predict the accuracy of the
target classifier on newly created data subsets. To illustrate the
steps involved in our predictive forward selection algorithm, we
consider a toy dataset in which the features F = {f;, ..., f,} are used
to represent each data sample. We assume an evaluation rate # of
50% and keep only the best (k=1) candidate feature set during
each iteration.

1. Start with an empty set of features M:=g
2. For each feature f; e F\M:
o Extract data subset D, containing only the class label
and the features M and f;.

e Compute m meta-features E)q € R™ of the data subset
D,

o Apply regression model /', from Eq. (2) to predict the
accuracy 759q.

3. Rank data subsets according to their predicted accuracy.

4. Train and compute the accuracy Pp, of the target
classifier on the 7 =50% top-ranked data subsets.

5. Add the feature f; of the data subset with the highest
computed accuracy (Pp,) to the set M of selected
features.

6. If stopping criterion is fulfilled, stop. Otherwise,
continue at step 2.

3. Experimental setup

We evaluated the presented approach using RBF-kernel SVM as
the target classifier. Training the SVM on each data subset involved
a 10 x 10 grid search to find suitable values for its parameters C
and y. Ten-fold cross-validation was performed to get a reliable
estimate of the accuracy achieved by SVM. Therefore, the evalua-
tion of one feature subset involved training of 1000 SVMs. Since
using two different subsets of the same dataset may have different

! The knowledge base developed in this paper is publicly available upon
request from the authors.

intrinsic properties, independent parameter optimization for the
feature subsets is necessary.

We started the evaluation with 22 rather small datasets
containing only 5-14 features. Such small datasets were used
because the evaluation of all possible feature combinations is
computationally feasible. This is important since it enables us to
compare the results of the other approaches to the optimum
(result obtained by brute-force search). Additionally, by knowing
the optimal accuracy, we can adjust the parameters of the forward
selection and the presented approach to reach almost optimal
accuracy without performing unnecessary feature evaluations.
This is important for the comparison of the run-time.

The datasets were randomly selected from the UCI machine
learning repository [2], StatLib [39], and the book “Analyzing
Categorical Data”[35].

3.1. Learning the regression model

The experience knowledge is created based on the 22 selected
datasets. First, meta-features are calculated for all possible feature
subsets of each dataset. We computed 51 meta-features from five
different groups (see Section 2.1): 17 simple, 5 statistical, 6 infor-
mation-theoretic, 17 model-based, and 6 landmarking meta-
features. The same meta-features as used in Reif [31] were
computed using the same R-script. The performance is evaluated
by applying the SVM classifier including the parameter
optimization.

Since the number of features is different in the selected
datasets (varying from 5 to 14 features), the number of feature
subsets is different as well. For n features, the total number of
possible feature subsets is 2" —1. Each feature subset generates
one instance of the training data for the regression model. There-
fore, a dataset with 4 features will generate 15 training instances,
whereas a dataset with 14 features will generate 16,383 instances.
In order to balance the influence of the different datasets while
training the regression model, we used at most 511 randomly
selected instances per dataset. This is the number of possible
feature subsets of a dataset with nine features.

Applying a leave-one-out cross-validation, we created separate
regression models for each of the 22 datasets. We used the £-SVR -
the regression variant of the Support Vector Machine [36] - as the
meta-learner and libSVM [16] as its implementation. The &-SVR
was used because it is also able to model linear as well as non-
linear regression functions. The radial basis function is used as the
kernel. In Section 4.5, we present a comparison of different
regression algorithms when applied as a meta-learner.

The training data of the regression model for each dataset
contains only the experience knowledge gathered from the feature
selection runs of the remaining 21 datasets. Therefore, the exact
number of training instances slightly differs for different datasets,
but the training data is always based on 21 datasets.

All 51 meta-features were normalized to the interval [0; 1] and
an automatic feature selection on the meta-features was applied
independently for each regression model. We used a forward
selection with a three-fold cross-validation and a limit of at most
10 selected meta-features. The &-SVR was applied using default
parameters. Using the selected meta-features only, we optimized
the sensitive parameters of the €-SVR, y and C, using a 15 x 15 grid
and a three-fold cross-validation. The parameter y controls how
the data points are transformed into a higher dimensional space to
allow non-linear functions. The parameter C defines the penalty of
errors greater than ¢. As the last step, the final regression model
was trained using the selected meta-features and the selected
parameters.

The run-time for creating such a regression model strongly
depends on the size of the training data, the parameter optimization,
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and the feature selection. However, since the model can be created in
advance and independently from the actual feature selection task,
the run-time is not considered as an important factor. For instance, it
is worthwhile investing huge computational effort in creating a
model that will be used over a longer duration for many upcoming
feature selection tasks.

4. Results and discussion

4.1. Evaluation of accuracy

Besides the presented approach, we evaluated different wrapper,
filter, and embedded approaches. All wrapper and filter approaches
use exactly the same accuracy for the same feature subsets in order
to remove random factors within the cross-validation. The compar-
ison of accuracy and run-time is presented within the next sub-
sections.

4.1.1. Comparison to wrapper approaches

We applied five different wrapper approaches to all 22 data-
sets: using all features, evaluating all possible feature subsets
following a brute force approach, traditional forward selection, the
presented approach, and using random selection within the
presented approach. For the last method, the quality estimation
of the presented method is replaced by a random guessing in order
to show the effectiveness of the regression-based prediction.

For a fair and convincing comparison, we adjusted the para-
meters of the traditional forward selection such that there is no
statistical significance compared to the brute force approach while
requiring as few as possible classifier evaluations. We used the
Wilcoxon signed-rank test with a confidence level of 95% as
recommended by DemsSar [18]. As a result, only the two best
subsets at each iteration were kept and the search was stopped
after one iteration without improvement. The algorithms have a
parameter, defining the number of allowed generations without
any improvement. Here, the parameter was increased by one,
allowing one generation without improvement more. The evalua-
tion rate # was set to 10% (only 10% of the candidate subsets are
actually evaluated at each iteration).

Fig. 4 shows the accuracy values achieved for each single
dataset by the wrapper approaches. The comparison of the results
using all features and applying a brute force search shows that
reducing the set of features increases the accuracy on most of the
datasets.

In Fig. 5, the same comparison is shown as a boxplot. In both
plots, it is visible that the presented method achieves accuracy
values comparable to the results of the traditional forward

all features
random selection =—=

1669

selection. In order to test if the differences are statistically
significant, we again applied a Wilcoxon signed-rank test with a
confidence level of 95%. The difference of accuracy between the
traditional forward selection and the presented method was not
found to be statistically significant.

Using all available features and the presented approach with
random selection achieved lower accuracy. The differences in
accuracy between the proposed method and these two methods
were found to be statistically significant using the same Wilcoxon
signed-rank test.

4.1.2. Comparison to filter and embedded approaches

Besides the wrapper approaches, we compared the presented
approach with two state-of-the-art filter approaches: the mini-
mum redundancy-maximum relevance (MRMR) method [28] and
the fast correlation-based filter (FCBF) [42]. Since both filter
approaches contain the desired number of features to be selected
as a parameter, we applied these methods with all possible feature
set sizes and determined the best feature set by evaluating the
target classifier. Therefore, the number of classifier evaluations in
the filter approaches is equal to the number of features in the
considered dataset.

Furthermore, the penalized SVM using the SCAD penalty was
evaluated. The important parameter of this method A was opti-
mized in the interval [2719,21%). We used the existing implemen-
tation of penalized SVMs by Becker et al. [3] that includes also the
optimization of A. Because the algorithm contains a singular value
decomposition, it fails on datasets with a zero within-class
variance. This happens if any feature of a dataset is constant for
one class within one fold of the cross-validation, which is often the
case for the used datasets. Therefore, we regularized these folds by
adding small random terms to these features, but keeping them
perfectly separable. However, using this regularization, the
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Fig. 5. Boxplot of the accuracies on the 22 datasets achieved by the different
wrapper methods.
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Fig. 7. Boxplot of the accuracies on the 22 datasets achieved by the presented
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implementation still failed on three datasets. For the boxplot, the
accuracy achieved by using all features was used for these datasets
instead.

However, both filter methods and the embedded method do
not reach the accuracy of the presented method for many datasets
as visible in Fig. 6. The comparison using a boxplot is additionally
shown in Fig. 7. To determine whether these differences are
statistically significant, the same significance test as before was
applied. While the presented method is statistically significantly
better than FCBF and SCAD SV, the difference to MRMR is not
significant. However, if one more iteration without improvement
is allowed in our method, the difference from MRMR becomes
statistically significant.

It is notable that especially the “cloud” dataset seems to contain
irrelevant features decreasing the SVM performance. While for-
ward selection and the presented approach achieve the optimal
accuracy, SCAD SVM achieved an accuracy only slightly higher
than using all features. Surprisingly, the SCAD SVM did not achieve
the accuracy of using all features for multiple datasets, for example
for the “tea” and “wine” datasets.

4.2. Evaluation of computation time

We counted the number of SVM evaluations during the tradi-
tional forward selection as well as during the presented method
since this is the most time-consuming part and its comparison
across different datasets is much more clearer than comparing
absolute run-times on a particular machine.

The number of SVM evaluations for MRMR, the traditional
forward selection as well as the presented approach is plotted in

Fig. 8. As expected, the standard forward selection requires much
more evaluations than the filter approach. The number of evalua-
tions performed in the presented method is also statistically
significantly lower than those for the standard forward selection
and approximately the same as for MRMR. Since only 10% of the
feature subsets are actually evaluated during each iteration, this
result is not surprising. However, the used stopping criterion (stop
after a defined number of successive iterations without improve-
ment) might lead to a higher number of iterations. If the proposed
method selects different feature sets during an iteration than the
traditional forward selection does, the stopping criterion might be
fulfilled after a different number of iterations.

4.3. Scalability on datasets with a larger number of features

We also evaluated the presented feature selection method on
datasets containing a larger number of features. We wanted to
evaluate how the approach scales up in comparison to standard
forward selection and if the previously shown advantages still hold.

We randomly selected 37 additional datasets with up to 78
features. Applying wrapper methods on datasets with several
hundreds or thousands of features is computationally unfeasible,
especially if the parameter optimization of the target classifier is
performed for each candidate subset.

The evaluation on the selected datasets is the same as that for
the 22 smaller datasets. However, the evaluation on the bigger
datasets is completely separated from the previously used 22
datasets and no knowledge from these datasets is used.

Fig. 9 shows the comparison of the presented method and the
standard forward selection for these relatively bigger datasets. For
this evaluation, both methods use exactly the same parameter
values: they keep the two best subsets during each iteration and
will be stopped after two successive iterations without improve-
ment. Different evaluation rates were investigated for the pre-
sented approach. This parameter is important and controls the
trade-off between accuracy and run-time. A rate of 100% will lead
to a traditional forward selection.

As expected, higher evaluation rates lead to better results.
However, the differences are not very large, which is an indication
of the effectiveness of the predictions: increasing the number of
evaluated subsets does not lead to significantly better results
which means that the actually best subsets were already selected
using the lower evaluation rate. The difference between the
presented approach and the standard forward selection is already
for an evaluation rate of 10% statistically not significant.

The required evaluation rate is mainly influenced by the
precision of the regression model. If the prediction quality can
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Fig. 9. Boxplot of the accuracies on the 37 bigger datasets achieved by the
presented method using different evaluation rates and the standard forward
selection.

be further increased, e.g., by using different meta-features, more
training data, or using the method with a different target classifier,
a lower evaluation rate might be sufficient.

4.4. Effect of cardinality of the base datasets

To investigate whether the cardinality (number of features) of
the base datasets has an influence on the prediction accuracy of
the learned regression function, we swapped the regression
models applied on the small-sized datasets with those applied
on the larger sized datasets. That means, for feature selection on a
small dataset, the regression model trained on the bigger datasets
is applied and vice versa.

Fig. 10 shows the boxplots of the results. While using the
experience about bigger datasets for the feature selection of
datasets with less features does not have a clear influence, using
experience only about datasets with few features slightly worsens
the results for the bigger datasets. This is because the model
trained on bigger datasets also contains the knowledge about
smaller feature sets which is sufficient for the datasets with less
features. However, the model based on small datasets misses the
knowledge about feature sets with a higher number of features
resulting in a lower accuracy.

4.5. Influence of the choice of the meta-learning algorithm

So far, the results and discussion were based on using the e-SVR
as the meta-learning scheme. In this section, we study how the
choice of the meta-learner influences the overall performance
of the proposed predictive feature selection method. For this
purpose, we compare £-SVR with several other regression algo-
rithms for use as a meta-learner. These algorithms include linear

regression, Gaussian process, and a k-Nearest Neighbor (k-NN)
algorithm. We used a sigmoid kernel for the Gaussian process and
weighting based on the distance for k-NN. Also, k was optimized in
the interval [1;20] using a brute-force approach.

As performance measure, we used the Pearson Product
Moment Correlation Coefficient. Thereby, we measure the correla-
tion between the predicted P and computed accuracies P of a
classifier on a feature set:

El(P—pp)(P —pp)]
Erp = T. 3
where u, and u; represent the mean of the computed and
predicted accuracies respectively, and o, 65 represent the corre-
sponding standard deviations. This measure returns values in the
interval [—1;1]. A value of 1 (—1) indicates a perfect positive
(negative) relationship. If the correlation is O, the two input
variables are independent.

We selected this measure because not only the numerical
difference between the predicted and computed accuracies is rele-
vant, but also the ordering of the feature sets is important. A perfect
correlation (&5, » = 1) would indicate a perfect ordering of the feature
sets according to the predicted quality. Consequently, the actually
best feature sets are selected for evaluation. Furthermore, with a
perfect correlation, the evaluation step would be needless. No
correlation (&, 5 =0) would indicate that the predictions made by
the regression model are not better than random guessing.

For calculating the correlation of a meta-learner, we predicted
the quality of at most 511 random feature subsets for each of the
bigger datasets. The prediction was done by using a regression
model trained on at most 511 random feature subsets of each
remaining dataset.

Table 1 shows the results for the four considered regression
algorithms. While &-SVR achieved the highest correlation and
linear regression a comparable one, the correlation of Gaussian
process and k-NN are lower. We therefore conclude that e-SVR is a
suitable regression algorithm for this task.

Additionally, we also applied the different regression learners
within the actual feature selection process. Fig. 11 shows the final
accuracies achieved by the different regression learners for an
evaluation rate of 0.1. As expected, the results of e-SVR and linear
regression are comparable while the performance of the two other
algorithms is lower.

5. Conclusion

In this paper, we presented an approach for decreasing the
computation time of wrapper based feature selection. We chose
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Fig. 10. Results of the presented method applied to the (a) smaller and (b) bigger datasets using the regression model trained on the other set of datasets.

Table 1
The Pearson Product Moment Correlation Coeffi-
cient (¢,5) achieved by different regression

algorithms.
Meta-learner Epp
e-SVR 0.801
Linear regression 0.783
Gaussian process 0.727
k-NN 0.723
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Fig. 11. Boxplot of the accuracies achieved by using four different regression
algorithms as meta-learners (= 0.1).

forward selection as the feature selection algorithm and Support
Vector Machine as the target classifier to demonstrate our
approach. The number of required classifier evaluations is reduced
by predicting the accuracy of a candidate feature subset in a
preliminary step and actually evaluating only feature subsets with
the highest predicted quality.

We evaluated the approach on several real-world datasets from
different domains. The results were compared to the brute-force
approach and traditional forward selection. The presented
approach achieved a comparable accuracy without a statistical
difference whereas the run-time was reduced significantly. Addi-
tionally, the evaluation showed that the presented method is able
to achieve statistically significant higher accuracy values than the
state-of-the-art filter approaches MRMR and FCBF, as well as an
embedded approach SCAD-SVM.

The method presented in this paper is, in principal, applicable
to any wrapper method, such as backward elimination, random
search, and brute-force search. While in random search, each
candidate is only evaluated if the estimation reaches a certain
threshold, a fixed fraction of all possible subsets might be
evaluated based on the estimations in a brute-force approach.
Furthermore, unlike embedded feature selection approaches, our
method is independent of the choice of the target classifier and
can be used in combination with other classifiers such as neural
networks or nearest-neighbor classifier.
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