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Abstract

Many classification approaches first represent a test sample using the training

samples of all the classes. This collaborative representation is then used to la-

bel the test sample. It is a common belief that sparseness of the representation

is the key to success for this classification scheme. However, more recently,

it has been claimed that it is the collaboration and not the sparseness that

makes the scheme effective. This claim is attractive as it allows to relinquish

the computationally expensive sparsity constraint over the representation. In

this paper, we first extend the analysis supporting this claim and then show

that sparseness explicitly contributes to improved classification, hence it should

not be completely ignored for computational gains. Inspired by this result,

we augment a dense collaborative representation with a sparse representation

and propose an efficient classification method that capitalizes on the resulting

representation. The augmented representation and the classification method

work together meticulously to achieve higher accuracy and lower computational

time compared to state-of-the-art collaborative representation based classifica-

tion approaches. Experiments on benchmark face, object and action databases

show the efficacy of our approach.
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representation.

1. Introduction

Several recent approaches for multi-class classification (e.g. [1], [2], [3], [4],

[5], [6], [7], [8], [9]) exploit the representation of a test sample over a redun-

dant basis, formed by the training samples (or their extracted features). This

collaborative representation of the test sample, in which the training samples5

from different classes collaborate to approximate the test sample, is later used

to decide its class label. Wright et al. [6] first demonstrated the impressive po-

tential of this scheme for face recognition. Their approach additionally forces

the representation to be sparse (i.e. it uses only a few vectors from the basis).

Hence, it is called Sparse Representation based Classification (SRC).10

The success of SRC was followed up by its variants. For instance, Huang

et al. [10] proposed a transformation-invariant SRC. Zhou et al. [11] combined

Markov Random Fields with SRC for disguised faces. Similarly, Wagner et

al. [12] enhanced SRC for the misalignment, pose and illumination invariant

recognition. Yang et al. [13] proposed a robust sparse representation tech-15

nique to be used for face recognition. Effectiveness of these approaches also

boosted significant research in dictionary learning [14] based multi-class classifi-

cation [15], [2], [16], [17], [18], [19]. Initially, the success of these approaches was

attributed to the sparseness of the used representation. However, more recently,

researchers have started questioning the role of sparsity in such approaches [20],20

[21], [9]. Among them, Zhang et al. [9] analyzed the working mechanism of SRC

and claimed that it is the collaboration and not the sparseness of the represen-

tation that is the reason behind the effectiveness of SRC (and hence the related

approaches). This result is rather widely acclaimed as it provides grounds to

relinquish the computationally expensive sparsity constraint over the represen-25

tation without sacrificing the classification accuracy.

In this paper, we first extend the analysis of Zhang et al. [9] and, in contrast

to the original claim, we show that sparseness of collaborative representation ex-
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plicitly contributes to accurate classification, hence it should not be completely

ignored for computational gains. Motivated by this intuition, we propose a30

Sparsity Augmented Collaborative Representation based Classification scheme

(SA-CRC)1 that uses both dense and sparse collaborative representations to de-

cide the class label of a test sample. SA-CRC computes the dense representation

using the regularized least squares method and greedily approximates the sparse

representation using the Orthogonal Matching Pursuit (OMP) [22]. OMP’s so-35

lution is used to augment the dense representation. Finally, the augmented

representation is classified by capitalizing on its enriched discriminative prop-

erties. To that end, we propose an efficient classification method that avoids

explicit computation of the reconstruction residuals for each class. We evalu-

ate the proposed approach on two face databases [23], [24], one object category40

database [25] and a dataset for action recognition [26]. Extensive experiments

with these public databases show that our approach is not only more accu-

rate than the state-of-the-art collaborative representation based classification

approaches, its classification time is also much lower than the approaches that

ignore the sparsity altogether.45

We organize this paper as follows. In Section 2, we formulate the problem

and define the used terms. An overview of the relevant literature is provided in

Section 3. Section 4 discusses the role of collaboration and sparsity in classifica-

tion. We present the proposed approach in Section 5. Experimental evaluation

of the approach is provided in Section 6. After a discussion on the parameter50

settings of our approach in Section 7, we conclude the paper in Section 8.

2. Problem formulation

Let Φ P Rm�N denote the training data from C distinct classes, such that

Φ � rΦ1, ...,Φi, ...,ΦCs. Each sub-matrix Φi P Rm�ni pertains to a single class

and
°C
i�1 ni � N . The columns of Φ represent the training samples, that are55

1Code available at http://staffhome.ecm.uwa.edu.au/~00053650/code.html.

3
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the features extracted from images. Our goal is to develop an efficient multi-

class classification scheme by collaboratively representing a test sample y P Rm

over the training data2. A test sample is considered to be a feature vector that

can be linearly approximated by the training samples. That is, y � Φα, where

α P RN is the Collaborative Representation (CR) vector of the test sample.60

We allow Φ to be a redundant set of basis vectors in Rm. Furthermore, the

subspaces spanned by the sub-matrices ΦiPt1,...,Cu are considered to be possibly

overlapping, as this is often the case for the multi-class classification problems.

Following the sparse representation literature [27], [28], we alternatively refer to

Φ as the dictionary and to its columns as the dictionary atoms. Furthermore,65

we generally refer to the representation vector (e.g. α) as representation, for

brevity.

3. Related work

Algorithm 1 presents the base-line scheme used by the popular approaches

(e.g. [6], [29], [9], [21], [30], [7]) that exploit collaborative representation in70

multi-class classification. The algorithm performs three key steps of (1) opti-

mizing y’s representation over a given dictionary, (2) computing class-specific

reconstruction residuals ripyq, @i P t1, ..., Cu and (3) labeling y using the com-

puted residuals. In step (2), άi P Rni comprises the coefficients of α corre-

sponding to the ith class only. Hence, in step (3), y is assigned the label of the75

class that results in the smallest reconstruction residual. We can treat different

existing approaches as special cases of the presented algorithm.

In SRC [6], fpαq � ||α||1 in Eq. (1), which encourages the computed repre-

sentation α to be sparse. In Superposed-SRC (SSRC), Deng et al. [29] modified

the residual computation step of SRC. For SSRC, Φ consists of class centroids80

and sample-to-centroid differences. While computing the residuals, SSRC keeps

the coefficients of α corresponding to the sample-to-centroid differences fixed in

2No explicit training of a machine learning algorithm is aimed, Φ is conventionally referred

as the training data [6], [9].
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Algorithm 1 CR-based Classification

Input: (a) Training data Φ, with samples normalized to have unit `2-norm.

(b) Test sample y. (c) Regularization parameter λ.

1: Optimization: Solve

α � min
α
||y �Φα||22 � λfpαq, (1)

where, fp.q denotes a function and ||.||p represents the `p-norm of a vector.

2: Residual computation: Compute class-specific reconstruction residuals

ripyq � ||y � Φiάi||2, @i P t1, ..., Cu, where άi P Rni comprises the co-

efficients of α corresponding to the ith class.

3: Labeling: labelpyq � minitripyqu.
Output: labelpyq.

each άi. The CR-based classifier proposed by Zhang et al. [9] uses fpαq � ||α||2
and solves Eq. (1) using the Regularized Least Squares (RLS) method, hence

denoted as CRC-RLS. Shi et al. [21] used λ � 0 in Eq. (1) and solved it as the85

standard least squares problem for face recognition. Chi and Porikli [31] used a

linear combination of a CR-based classifier and a nearest subspace classifier [32]

for improved classification performance.

Collaborative representation is also commonly used by discriminative dic-

tionary learning techniques, e.g. [30], [7]. Although such approaches learn a90

dictionary instead of directly using the training data as Φ, explicit correspon-

dence between the learned dictionary atoms and the class labels allows them to

exploit the CR-based classification scheme. For instance, the Global Classifier

(GC) used by Kong and Wang [30] is the same variant of Algorithm 1 that is

used by SSRC [29]. The dictionary learned by the DL-COPAR algorithm [30]95

consists of COmmon atoms for all classes and PARticular atoms specific to each

class. The particular atoms behave like class centroids whereas the common

atoms act as centroid-to-sample differences in SSRC. Similarly, the GC used in

the Fisher Discriminant Dictionary Learning (FDDL) [7] is a direct variant of

5



CRC-RLS [9].100

Another interesting direction of discriminative dictionary learning techniques,

e.g. Label Consistent K-SVD (LC-KSVD) [2], Discriminative K-SVD (D-KSVD) [33]

and Discriminative Bayesian Dictionary Learning (DBDL) [15] is also related to

CR-based classification. Such techniques learn collaborative dictionaries from

the training data without enforcing strict correspondence between the class la-105

bels and the dictionary atoms. Due to the lack of such correspondence, the label

of a test sample is chosen by maximizing a weighted sum of the coefficients of

α, where the N -dimensional C weight-vectors are also learned during dictio-

nary optimization. Among these weight-vectors, the ith vector generally assigns

large weights to the coefficients of α corresponding to the dictionary atoms used110

commonly in representing the training data of the ith class.

The above mentioned discriminative dictionary learning approaches classify

a test sample using its representation over a collaborative set of features, learned

directly from the training data. Therefore, in this work, they are also considered

to be instances of CR-based classification.115

4. Collaboration and Sparsity

It is clear from Section 3 that many popular approaches directly exploit

collaborative representation α in classification. Whereas sparse representation

based approaches (e.g. [6], [29]) associate the discriminative power of α to its

sparseness, there is an equal evidence in favor of discriminative abilities of dense120

representations [31], [21], [9]. In fact, it is also advocated that sparsity of the

representation may not even be relevant to classification [20], [21], [9]. Zhang

et al. [9] boosted the popularity of this notion by corroborating their claim

with an analysis of the working mechanism of SRC. In Section 4.1, we closely

follow this analysis to explain the role of collaboration in CR-based classification.125

We extend this analysis on the same lines of reasoning in Section 4.2 to show

that collaboration alone is not sufficient for accurate classification. Section 4.3

discusses how sparseness additionally helps in this regard.
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(a) (b)

Figure 1: Geometric illustration of the working mechanism of collaborative

representation based classification.

4.1. Why collaboration works?

We write the subspace spanned by the columns of Φ as a set Ψ. This130

subspace is geometrically illustrated as a plane in Fig. 1. Since a test sample y

is approximated by the columns of Φ, we can write the approximation error as

ε � y � ry, where ry � Φα � Ψ 3. Let us represent the subspace spanned by

the training data of the ith class by a set Ψi, where Ψi � Ψ. Without loss of

generality, we can decompose ry into two components, ξi and ξi (illustrated in135

Fig. 1a) such that ξi � Ψi and ξi � Ψi, where Ψi � �C
j�1;j�i Ψj . Similarly,

the total approximation error ε can itself be considered as a component of εi,

where ||εi||2 represents the class-specific reconstruction residual ripyq, see step 2

of Algorithm 1.

To understand the working mechanism of CR-based classification, let y be-140

long to the cth class. In this case, ry � ξc�ξc, i.e. i � c in Fig. 1a. A CR-based

classifier selects c as the label of y because εi is expected to have the smallest

length when i � c [6], [9]. Zhang et al. [9] noted that this labeling criterion not

only considers that the angle between ry and ξc (i.e. β) is small, it also considers

3For Φ P Rm�N , y � Ψ when N Ñ 8 and ε K rΨ, where rΨ � Ψ. In that case, we are

concerned with rΨ only, as y is considered to be approximated with a small error of bounded

energy, i.e. ||ε||2 ¤ ε. We exaggerate the error vector in figures for clarity.
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that the angle between ξc and ξc (i.e. γ) is large. According to Zhang et al. [9],145

it is this double-check with β and γ (not the sparseness of the representation)

that makes CR-based classification robust and effective. Therefore, they solved

Eq. (1) using a computationally efficient regularized least squares method. The

resulting dense collaborative representation was shown to be effective for face

recognition, similar to sparse representation.150

4.2. Why collaboration alone is not sufficient?

In the following text, we refer to a vector εi as class-specific error vector.

We present Lemma 4.1 regarding the underlying geometry of the class-specific

error vectors involved in CR-based classification:

Lemma 4.1. For i, j, k P t1, ..., Cu, where i � j � k, the following holds:155

D εi, εj such that ||εi||2 � ||εj ||2, while E εk such that ||εk||2   ||εi||2.

Proof: For our problem, the following holds under the law of sines, which can

be verified from Fig. 1a:

||ry||2
sinpγq �

||ξi||2
sinpβq . (2)

Also, ||εi||22 � ||ε||22 � ||ξi||22 because Ψ K ε. From Eq. (2),

||εi||22 � ||ε||22 �
�

sinpβq
sinpγq


2

||ry||22. (3)

Since ||ε||22 and ||ry||22 become constants once y is projected onto Ψ, the condition

that E εk s.t. ||εk||2   ||εi||2 holds when
�

sinpβq{ sinpγq�2 is the minimum.

However, for β, γ P r0, 2πs there is no unique minima for the given squared

ratio. Hence, it is possible that D εi, εj s.t. ||εi||2 � ||εj ||2, while E εk s.t.160

||εk||2   ||εi||2.

Lemma 4.1, shows the possibility of existence of multiple class-specific error

vectors with equal lengths when the length is minimized over the class labels.

Figure 1b illustrates this possibility by drawing a circle of radius ||ξi||2 around

point ó on Ψ. Any vector starting from a point on this circle (e.g. p, q) and165

ending at z will have the same length. For the labeling criterion of CR-based

8



classification scheme, collaboration of the representation alone is not sufficient

to indicate the best vector among these possible vectors. From Lemma 4.1, it is

also evident that the double-check with β and γ mentioned by Zhang et al. [9] is

essentially a single-check on the squared ratio of the sines of the angles. Thus,170

CR-based classification without considering sparsity may not be as robust and

effective as previously thought.

4.3. How sparseness helps?

The above mentioned issue is inherent to CR-based classification scheme,

with its roots in the redundancy in Φ. Simply computing a unique approx-175

imation of the representation, such as in CRC-RLS [9], does not resolve the

issue because Lemma 4.1 still holds for the labeling step in Algorithm 1. To

truly address the problem, a collaborative representation must be infused with

additional information that finally results in using a suitable class-specific error

vector in the labeling step. Sparsity constraint over the representation serves180

this purpose in CR-based classification.

To support our argument, in Fig. 2, we geometrically illustrate the two

jointly exhaustive situations that can occur when two class-specific error vectors

εi and εj have equal lengths, namely (a) ξi � ξj and (b) ξi � ξj . In the figure,

we denote ξi by a and ξj by b and show these vectors only by their components185

to avoid cluttering. In Fig. 2a, a � b but ||εi||2 � ||εj ||2. In Fig. 2b, a � b � ÝÑop
and ||εi||2 � ||εj ||2. Although the class-specific residuals are equal in both

cases, ξi and ξj can be distinguished based on their components. Intuitively, i

(not j) represents the correct class of the test sample because ξi requires lesser

number of components to produce the smallest class-specific residual. Fewer190

components of ξi implicates a sparser α. Hence, the sparsity constraint results

in using a better class-specific error vector in the labeling step. Incidentally, the

best performance of CR-based classification can be achieved by guaranteeing

the representation to be the sparsest possible.

9



(a) (b)

Figure 2: Geometric illustration of the jointly exhaustive cases when Dεi, εj such

that ||εi||2 � ||εj ||2: (a) ξi � ξj . (b) ξi � ξj . Here, ξi � a and ξj � b and the

vectors are only displayed in terms of their components.

5. Proposed approach195

Computing the sparsest possible representation is generally NP-hard [34].

SRC [6] uses the `1-norm constraint to compute an approximate sparse repre-

sentation, but the approach remains computationally expensive. On the other

hand, computing a dense representation, such as in CRC-RLS [9], resolves the

computational issues but it does not offer the advantages of sparsity. In the pro-200

posed classification scheme, we augment a dense representation with a greedily

obtained approximate sparse representation. This augmentation enables accu-

rate classification while keeping the approach computationally efficient.

Algorithm 2 presents the proposed scheme. In the first step, the algorithm

optimizes two collaborative representations, i.e. qα and pα. The dense repre-205

sentation qα is computed using the regularized least squares method, whereas

the sparse representation pα is obtained by solving Eq. (4) using the Orthogonal

Matching Pursuit (OMP) algorithm [22]. OMP iteratively selects k dictionary

atoms to represent y, hence, pα has at most k non-zero coefficients, where k

(the sparsity threshold) is determined by cross-validation. In each iteration,210

OMP chooses a dictionary atom by maximizing its correlation with an error

vector. The error vector is computed as the difference between y and its or-

10



Algorithm 2 Sparsity Augmented CR-based Classification

Input: (a) Training data Φ, with samples normalized in `2-norm. (b) Test

sample y. (c) Regularization parameter λ. (d) Sparsity threshold k. (e)

Label matrix L.

1: Optimization:

a) Compute qα � Py, where, P � pΦTΦ�λIN q�1ΦT. b) Solve the following

with greedy pursuit:

pα � min
α
||y �Φα||2, s.t. ||α||0 ¤ k, (4)

where, ||.||0 denotes the `0-pseudo norm.

2: Augmentation: Compute

�
α � pα� qα

||pα� qα||2 (5)

3: Labeling: labelpyq � arg maxitqiu, where qi denotes the ith coefficient of

q � L
�
α.

Output: labelpyq.

11



thogonal projection onto the subspace spanned by the already chosen atoms.

For initialization, y itself is considered as the error.

As shown in step 2 of Algorithm 2, we add the sparse representation pα to qα215

and normalize the resulting vector to compute the augmented representation
�
α.

Despite being simple, this procedure greatly improves the discriminative abilities

of the representation. We defer the discussion on the discriminative properties

of
�
α to the upcoming paragraphs. These properties are exploited in step (3)

of the algorithm to efficiently compute the label of the test sample y. The220

labeling step uses a binary matrix L P RC�N , that is provided as an input to

the algorithm. For the ith class, L contains ni non-zero elements in its ith row,

at the indices corresponding to the columns of Φi. Thus, the ith coefficient of

q � L
�
α represents the sum of

�
α’s coefficients corresponding to Φi. The label

of the test sample is decided by maximizing the coefficients of q. Empirical225

evidence for efficient and accurate classification using the proposed scheme is

provided in Sections 6. Below, we analyze the reasons behind the improved

performance of the approach.

For analysis, let us distribute the coefficient indices of a collaborative repre-

sentation α into two disjoint sets: AH � ti : Ξi ¡ δu and AL � tj : Ξj ¤ δu,230

where δ P R� and Ξn � α2
n

||α||22
with αn P R denoting the nth coefficient of α.

The value Ξn represents the energy in the nth coefficient, such that
N°
n�1

Ξn � 1.

If δ � 0, AH contains the indices of non-zero coefficients of α, whereas AL
comprises the indices of zero coefficients. Thus, the cardinality of the set AH,

i.e. |AH|, defines the sparsity level of α. This remains true for 0 ¤ δ   min
i

Ξi.235

Let α� denote the sparsest possible representation of y over Φ. We write the

aforementioned sets for α� as A�H and A�L. Furthermore, for any α, let us now

fix δ �
�
α�

min

||α�||2

	2

� ε, where α�min denotes the lowest energy coefficient of α�.

Hence, |AH| now counts the number of coefficients of α, each having at least

the energy possessed by α�min. Therefore, henceforth, we refer to |AH| as the240

effective sparsity of the representation.

From Section 4, we know that α� is discriminative due to its sparsity. In

12



Figure 3: Comparison of test sample representations from the Extended YaleB

database [24]: The sparse representation consistently shows large positive values

at the coefficients corresponding to the correct class. This results in correct

classification by SA-CRC that uses the augmented representation to predict

the class label. By using the dense representation only, CRC-RLS [9] predicts

incorrect class label despite optimized parameter values. For better visibility,

only the first 900 coefficients of the representation vectors are shown out of 1216.

practice, a representation
�
α is equally effective for classification if |A�H| � |A�H|

and the coefficients indexed in A�H are discriminative4. For a dense representa-

tion qα, |A_H| � N " |A�H|. Nevertheless, the representation is globally optimal.245

On the other hand, |A^H| � k ! N for the sparse representation pα, but the

representation is only locally optimal. However, pα generally contains large pos-

itive coefficients at the indices corresponding to the correct class. For the other

classes, most of the coefficients are either negative or have small positive values.

This happens because OMP greedily assigns large values to the coefficients of pα250

corresponding to the dictionary atoms that correlate more to y, whereas y gen-

erally has a strong positive correlation with the samples of its own class. Thus,

adding pα to qα amplifies the coefficients of the correct class in the globally op-

timal solution. Figure 3 illustrate this phenomenon using an actual example of

4We can safely ignore A�L in this argument because the coefficients indexed in A�L can be

explicitly forced to zero, once A�H is known.
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face recognition. In the figure, the coefficients of pα are consistently positive and255

have relatively large values for the correct class. This finally results in dominant

positive coefficients of
�
α for the correct class. For this example, CRC-RLS [9] is

not able to identify the correct label of y despite optimized parameter settings,

whereas the proposed approach classifies y correctly.

Notice that, the augmentation in Eq. 5 also results in |A�H| ! |A_H|, because260

the procedure reduces the relative energy in the un-amplified coefficients of
�
α.

To illustrate the difference between the effective sparsity levels of the dense and

the augmented representations, we plot the effective sparsity of the representa-

tions as a function of δ in Fig. 4. The plot is for actual face recognition task

using Extended YaleB database [24]. The curve for the augmented represen-265

tation remains significantly lower than the curve for the dense representation.

Moreover, for δ ¡ 3� 10�4,
�
α is effectively almost as sparse as pα.

Considering the definition of effective sparsity, ideally, the coefficients of
�
α

indexed in A�L must be forced to zero before using the representation for classifi-

cation. However, since δ is unknown, identifying the exact A�L remains NP-hard.270

To resolve this issue, we design the labeling criterion that largely remains in-

sensitive to the coefficients indexed in A�L. That is, instead of deciding the class

label of a test sample based on the fidelity of its reconstruction, we directly

integrate the coefficients of
�
α for each class separately. The largest integrated

value indicates the correct class label. Due to the dominance of large values275

of the coefficients of the correct class in
�
α, A�L is not able to strongly influ-

ence the classification results. More precisely, our classification result remains

as reliable as that obtained using an accurate representation with sparsity level

|A�H|, under the mild worst-case condition
°
a�

°
b ¡ 2

?
δpnb � naq. Here,°

a and
°
b denote the largest and the second largest integrated values of the280

coefficients, respectively, and nb and na are the number of coefficients in
�
α

contributing to
°
b and

°
a respectively, such that, each coefficient has energy

less than δ. To exemplify, in Fig. 4, the classification results are as accurate as

possible with sparsity level 21, unless
°
a�

°
b ¤ 0.04 � pnb � naq. Typically,°

a�
°
b P r0.1 0.3s, whereas nb � na. Since our labeling criterion does not need285
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Figure 4: Comparison of effective sparsity for face recognition, using Extended

YaleB database [24].

to compute reconstruction residuals for each class, we directly use the matrix L

in step (3) of Algorithm 2. The matrix multiplication L
�
α simultaneously inte-

grates the coefficients for each class. Computationally, this makes our labeling

step very efficient.

6. Experiments290

We evaluated the proposed approach on two face databases: AR database [23]

and Extended YaleB [24], an object category database: Caltech-101 [25] and an

action dataset: UCF sports actions [26]. These datasets are commonly used to

benchmark the approaches that use collaborative representation for classifica-

tion. We compare the performance of our approach to SRC [6], CRC-RLS [9],295

LC-KSVD [2], D-KSVD [33], FDDL [7] and DL-COPAR [30]. Unless men-

tioned otherwise, we performed our own experiments using the same training

and testing partitions for all the approaches including the proposed approach.

We carefully optimized the parameter values of the approaches using cross vali-

dation. For the existing techniques, these values are generally the same as those300

reported in the original works. However, for some cases, we used different values

to favors these approaches. We explicitly mention these differences. For the dic-

tionary learning approaches, the dictionaries are learned using the same training

data that is directly used by SRC, CRC-RLS and the proposed approach.

We used the author-provided codes for CRC-RLS, LC-KSVD, FDDL and DL-305
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(a) AR database [23] (b) Extended YaleB [24]

Figure 5: Examples from the face databases.

COPAR. For SRC, we used the SPAMS toolbox [35] to solve the `1-norm mini-

mization problem. For D-KSVD, we modified the public code of LC-KSVD [2].

In all the experiments, the proposed approach uses the implementation of OMP

made public by Elad et al. [36]. The same implementation is used by LC-KSVD

and D-KSVD. The proposed approach uses the sparsity threshold k � 50 for310

all the datasets. The regularization parameter λ is set to 0.003 for the face

databases, 1.0 for the object database and 0.01 for the action database. Exper-

iments have been performed using a single core of Intel Core i7-2600 CPU at

3.4 GHz with 8 GB RAM.

6.1. AR Database315

The AR database [23] consists of over 4, 000 face images of 126 subjects.

For each subject, 26 images are taken during two different sessions with large

variations in terms of facial disguise, illumination and expressions. Fig. 5a

shows example images from the database. For our experiments, a 165�120 face

image was projected onto a 540-dimensional vector using a random projection320

matrix. Thus, the used samples are the Random-Face features [6]. We followed

a common experimental protocol by selecting a subset of 2, 600 images of 50

male and 50 female subjects from the database. For each subject, 20 random

images were chosen to create the training data and the remaining images were

used for testing.325

In Table 1, we summarize the results on the AR database. The reported

accuracies are the means (and the standard deviations) of ten experiments. We
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Table 1: Recognition accuracies on the AR database [23] using Random-Face

features. The reported average time (in milli-seconds) is for classifying a single

test sample.

Method Accuracy (%) Time

DL-COPAR [30] 93.33� 1.69 40.01

LC-KSVD [2] 95.20� 1.22 1.56

D-KSVD [33] 95.41� 1.43 1.54

FDDL [7] 96.24� 1.01 51.23

SRC [6] 96.51� 1.36 69.91

CRC-RLS[9] 97.65� 0.67 4.46

SA-CRC (only RLS) 97.13� 0.74 0.07

SA-CRC (only OMP) 97.25� 0.43 2.00

SA-CRC (proposed) 98.29� 0.46 2.13

also report the average time taken by each approach to classify a single test

sample. For the parameter values of DL-COPAR, we followed the face recog-

nition parameter settings in [30], which uses 15 atoms per class to represent330

class-specific data and 5 atoms to represent the commonalities. The Local Clas-

sifier [30] resulted in the best accuracy for DL-COPAR. For LC-KSVD [2] and

D-KSVD [33] we set the sparsity threshold to 50 and the dictionary size to 1510

atoms for improved results. These values are different from the original works

because these were found to give the best accuracies. For FDDL, we used the335

same parameter settings as [7] and the Global Classifier resulted in the best

performance. For SRC [6], we set the error tolerance ε � 0.05, as in the original

work. For CRC-RLS [9], the regularization parameter λ is set to 0.003. This

value is computed using the formula provided for λ for the face databases in [9].

Our cross-validation verified that this value results in the best performance of340

CRC-RLS.

Table 1 shows that the best results are achieved by the proposed approach,

i.e. SA-CRC. We have also shown the results of our approach when we use
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Table 2: Performance gain with SA-CRC in dictionary learning based multi-

class classification. The average time (in milli-seconds) is for classifying a single

test sample.

Method Accuracy (%) Time

K-SVD [37] + Lin. Classifier 94.06� 1.03 1.56

K-SVD Φ Ñ SA-CRC 95.65� 0.66 1.61

ODL [38] + Lin. Classifier 94.60� 0.78 1.59

ODL Φ Ñ SA-CRC 95.33� 0.68 1.62

LC-KSVD [2] 95.31� 1.06 1.55

LC-KSVD Φ,L Ñ SA-CRC 96.44� 0.99 1.61

only the Regularized Least Squares (RLS) or OMP in Algorithm 2. It is clear

that using the augmented vector is better than using any of the two representa-345

tion vectors alone. Notice that, due to the efficient classification criterion, our

approach is much faster than CRC-RLS even when both OMP and RLS are

used. The dictionaries used by LC-KSVD and D-KSVD are smaller in size as

compared to the one used by SA-CRC, which results in slight computational

advantage for these approaches. Nevertheless, accuracies of these approaches350

are much lower than SA-CRC.

In Table 2, we demonstrate the potential of SA-CRC for improving the

performance of dictionary learning based multi-class classification approaches.

The results are the mean values computed over ten experiments. We obtained

the results in the first row as follows. First, K-SVD [37] is used to learn a355

dictionary containing 15 atoms per class. The sparse codes of the training data

over the dictionary are used to compute a linear classifier, following [2]. A

test sample is classified by first sparse coding it over the dictionary and then

classifying its codes using the classifier. In the second row, we feed the same

dictionary to SA-CRC as input Φ instead (the test data remained the same). We360

also repeated the above procedure using the Online Dictionary Learning (ODL)

approach [38] in place of K-SVD. The corresponding results are also reported.
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We can see a clear gain in the classification accuracies using SA-CRC in both

cases. The table also compares the classification performance of LC-KSVD [2]

with its enhancement using SA-CRC. For the enhancement, we replaced the365

classification stage of LC-KSVD with SA-CRC. That is, the dictionary and the

weight matrix learned by LC-KSVD are directly used as SA-CRC’s inputs Φ and

L, respectively. There is a clear improvement in the classification performance

of LC-KSVD after this modification. The performance of other discriminative

dictionary learning approaches can also be improved using SA-CRC. Results in370

Table 1 and 2 demonstrate the potential of sparsity augmented collaborative

representation for improved CR-based classification across the board.

6.2. Extended YaleB

The Extended YaleB face database [24] comprises 2, 414 images of 38 sub-

jects. Each subject has about 64 samples acquired under varying illumina-375

tion conditions with different expressions. See Fig. 5b for examples. For this

database, 192�168 cropped images were projected onto a 504-dimensional vec-

tor to obtain the Random-Face features. For evaluation, we used a common

experimental setting, where half of the available features of each subject were

used as the training data and the remaining half were used in testing.380

In Table 3, we show the results on Extended YaleB. For D-KSVD and LC-

KSVD we used 600 dictionary atoms as they gave the best accuracies. The

remaining parameters of these algorithms were set to the original values re-

ported in [2]. We set the regularization parameter of CRC-RLS to 0.002 for this

database, as guided by [9] and dictated by cross-validation. For the remaining385

approaches, the parameter values reported in Section 6.1 also resulted in their

best performances for this database, hence they were kept the same. Again, SA-

CRC is able to outperform the existing techniques. Although SA-CRC attains

only a slight advantage over CRC-RLS in terms of accuracy for this dataset, it

is able to classify a test sample almost twice as fast as CRC-RLS due to the390

proposed classification criterion.
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Table 3: Recognition accuracies with Random-Face features on the Extended

YaleB database [24]. The average time (in milli-seconds) is for classifying a

single sample.

Method Accuracy (%) Time

D-KSVD [33] 94.71� 0.45 0.41

DL-COPAR [30] 94.87� 0.55 31.75

LC-KSVD [2] 95.38� 0.64 0.42

FDDL [7] 96.19� 0.71 58.19

SRC [6] 97.06� 0.41 68.12

CRC-RLS [9] 97.81� 0.44 2.41

SA-CRC 98.32� 0.43 1.23

6.3. Caltech-101

Caltech-101 database [25] contains 9, 144 images from 101 object classes

and one class of background images. The classes include diverse categories

of object (e.g. trees, minarets, signs) with significant shape variation within395

a category. Fig. 6 illustrates this variation. For each class, the number of

available images vary between 31 and 800. In our experiments, the used image

feature descriptors were obtained by the following procedure. First, the SIFT

descriptors [39] were extracted from 16�16 patches. Based on these descriptors,

spatial pyramid features [40] were extracted with 1 � 1, 2 � 2 and 4 � 4 grids.400

For extracting these features, the codebook was trained using k-means, where

k � 1024. Finally, the dimension of a feature was reduced to 3, 000 using PCA.

Following a common experimental setting, we created 5 sets of train and test

data with the extracted features. These sets consisted of 10, 15, 20, 25 and 30

training samples per class, whereas the remaining samples were used as the test405

data in each case. We repeated our experiments ten times, every time selecting

the training and testing data randomly.

Table 4 shows the mean classification accuracies for our experiments. We

used the error tolerance of 10�6 for SRC, which gave the best results. The
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Figure 6: Representative images from three categories of objects in Caltech-101

database [25].

regularization parameter λ � 1.0 for CRC-RLS. The same value of the regular-410

ization parameter is used by SA-CRC to solve the RLS problem. For FDDL,

we used the parameter settings of the object categorization experiments in [7].

DL-COPAR and LC-KSVD use the same settings as in the original works for

the same database. These settings also resulted in their best performance for

our data. For D-KSVD, the settings used by [2] showed the best results.415

It is clear from Table 4 that SA-CRC consistently outperforms the existing

approaches. In Table 5, we also report the classification time (for the complete

test data) of the four most efficient approaches. The time is computed when

30 samples were used for training and the rest were used for testing. We can

see that SA-CRC is more than six times faster than CRC-RLS and its timings420

are comparable to those of the efficient discriminative dictionary learning ap-

proaches. Note that, D-KSVD and LC-KSVD also required around 90 minutes

of training.

6.4. UCF Sports Actions

The UCF Sports Action dataset [26] contains video sequences collected from425

different broadcast sports channels. The videos are from 10 categories of sports

actions (e.g. diving, lifting, running). Fig. 7 shows eight representative images

from the database for illustration. For this dataset, we used the action bank
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Table 4: Classification accuracies (%) on the Caltech-101 dataset [25] using the

spatial pyramid features.

Training samples 10 15 20 25 30

SRC [6] 57.8 63.3 67.2 69.2 71.8

CRC-RLS [9] 59.4 64.8 68.0 69.3 71.8

DL-COPAR [30] 58.4 65.1 69.3 71.1 72.5

FDDL [7] 59.7 66.6 69.1 71.3 72.9

D-KSVD [33] 60.7 66.3 69.6 71.0 73.1

LC-KSVD [2] 62.9 67.3 70.3 72.6 73.4

SA-CRC 63.2 68.2 71.9 73.6 76.1

Table 5: Computation time (in seconds) for classification on Caltech-101

dataset [25].

Method Time Method Time

D-KSVD [33] 19.80 SA-CRC 21.43

LC-KSVD [2] 19.91 CRC-RLS [9] 130.41

features made public by Sadanand and Corso [41] (http://www.cse.buffalo.

edu/~jcorso/r/actionbank/). A common evaluation protocol was followed430

in our experiments, where a fivefold cross validation was performed using four

folds for training and the remaining one for testing. The results in Table 6

are the average accuracies of the five experiments. The reported accuracies of

Sadanand [41], DL-COPAR and FDDL are taken directly from [42], where the

same experimental protocol has been followed. Our parameter optimization for435

FDDL and DL-COPAR could not achieve these accuracies. For the remaining

approaches the results are reported on the same folds using the optimized pa-

rameter values. For SRC, the error tolerance was set to 10�6 and 50 dictionary

atoms were used for LC-KSVD and D-KSVD. The same number of atoms were

used by Jiang et al. [2]. We used λ � 0.01 for both CRC-RLS and SA-CRC,440
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Figure 7: Examples from UCF Sports action dataset [26].

Table 6: Classification accuracies (%) on UCF Sports Action dataset [26] using

the action bank features.

Method Acc. Method Acc.

Sadanand [41] 90.7 FDDL [7] 93.6

DL-COPAR [30] 90.7 LC-KSVD [2] 94.2

D-KSVD [33] 93.4 CRC-RLS [9] 94.4

SRC [6] 93.5 SA-CRC 95.7

which resulted in their best performance. For all the five experiments com-

bined, the classification time was 0.04 seconds for SA-CRC and 0.31 seconds for

CRC-RLS.

7. Discussion

Our approach requires a regularization parameter λ and sparsity threshold445

k as the input parameters for a given pair of Φ and its label matrix L. In our

experiments, we optimized the values of these parameters by cross-vlaidation

using the following systematic procedure. First, λ was optimized by executing

Algorithm 2 without step 1(b) and considering pα to be a zero vector in Eq. 5.

Then k was optimized by fixing λ to the optimized value and executing the450

complete Algorithm. The parameters were further fine-tuned to nearby values

when doing so yielded better performance.

To show the behavior of SA-CRC for different parameter values, in Fig. 8,

we plot the classification accuracy of SA-CRC as a function of λ and k by fixing
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Figure 8: Accuracy as a function of parameters: One parameter is fixed for

SA-CRC while the other is varied. Both CRC-RLS [9] and SA-CRC always use

the same values of λ. (a) k is fixed to 50 in the first plot (from left) and λ

is fixed to 0.003 in the second. (b) k is fixed to 50 and λ to 1, respectively.

Notice, that the used fixed values of λ are the optimal values for CRC-RLS.

However, the proposed approach consistently outperforms CRC-RLS, even for

sub-optimal values of λ.

one parameter and varying the other. We also include results of CRC-RLS [9]455

for comparison. Plots in Fig. 8a, are for AR database [23] where we followed the

experimental protocol of [9]. In the first plot (from left), we fixed k to 50 and

varied λ. Clearly, SA-CRC consistently outperforms CRC-RLS and the results

are less sensitive to the values of λ once k is fixed to an optimized value. In

the second plot, we used λ � 0.003 for both SA-CRC and CRC-RLS and varied460

k for SA-CRC. Again, for k ¡ 20, SA-CRC consistently outperforms CRC-

RLS. Qualitatively speaking, Fig. 8a shows a typical relationship between the

performance of CRC-RLS and SA-CRC that was observed in our experiments

on face databases.

In Fig. 8b, we repeated the same experiment for the object dataset, Caltech-465

101 [25]. To fix the parameter values, we used k � 50 and λ � 1. For this

experiment, we used five samples per class for training and the remaining for

testing. Again, the plots consistently favor SA-CRC in comparison to CRC-

RLS. In our experiments, a qualitatively similar behavior was observed for all

the train/test partitions used in Table 4.470
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8. Conclusion

In contrast to a popular existing notion, we showed that sparsity of a Collab-

orative Representation (CR) plays an explicit role in accurate CR-based clas-

sification, hence it should not be completely ignored for computational gains.

Inspired by this result, we proposed a Sparsity Augmented Collaborative Rep-475

resentation based Classification scheme (SA-CRC) that augments a dense col-

laborative representation with an efficiently computed sparse representation.

The resulting representation is classified using a efficient criterion. Extensive

experiments for face, action and object classification establish the effectiveness

of SA-CRC in terms of accuracy as well as computational efficiency.480
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