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There is a need for automatic systems that can reliably detect, track and classify fish and other marine species in underwater videos without
human intervention. Conventional computer vision techniques do not perform well in underwater conditions where the background is com-
plex and the shape and textural features of fish are subtle. Data-driven classification models like neural networks require a huge amount of la-
belled data, otherwise they tend to over-fit to the training data and fail on unseen test data which is not involved in training. We present a
state-of-the-art computer vision method for fine-grained fish species classification based on deep learning techniques. A cross-layer pooling al-
gorithm using a pre-trained Convolutional Neural Network as a generalized feature detector is proposed, thus avoiding the need for a large
amount of training data. Classification on test data is performed by a SVM on the features computed through the proposed method, resulting
in classification accuracy of 94.3% for fish species from typical underwater video imagery captured off the coast of Western Australia. This re-
search advocates that the development of automated classification systems which can identify fish from underwater video imagery is feasible
and a cost-effective alternative to manual identification by humans.

Keywords: deep learning, fish classification, fisheries management, neural networks, stock assessment, underwater video.

Introduction
Data on the relative abundance, length and distribution of fish is

important for monitoring the status and health of fish assem-

blages, and in particular those species targeted by fisheries.

Due to global changes in the oceanic environment, fish and fish

habitats are under increasing pressures (Bennett et al., 2015;

Wernberg et al., 2016). Standardized, cost effective and reliable

tools are essential for routine monitoring of fish across multiple

depths and habitats (McLaren et al., 2015). Manual methods of

fish population estimation and species classification that involve

destructive and time consuming measures, such as the physical

capture of samples and underwater visual census by divers, are

still a common approach (Cappo et al., 2003a,b; Mallet and

Pelletier, 2014). In contrast, underwater video-based fish moni-

toring approaches are gaining popularity as an effective, portable,

non-invasive and non-destructive method of fish population

sampling (Shortis et al., 2009; Murphy and Jenkins, 2010;

Whitmarsh et al., 2017). Off-the-shelf ‘action’ cameras and video

recorders provide high quality, high-resolution images at afford-

able cost, leading to their predominance as the preferred sampling
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technique (Murphy and Jenkins, 2010). However, manual analy-

sis of video sequences by species experts is a time consuming, and

therefore costly process (Greene and Alevizon, 1989). An auto-

matic species recognition system has great potential to improve

the efficiency of the analysis, leading to more rapid responses and

wider use of video monitoring to assess the status and health of

the marine environment. Video-based automatic estimation of

fish populations and species recognition is a two-stage process:

(i) fish detection in the video frames followed by (ii) species clas-

sification. Fish detection is a process of distinguishing fish from

non-fish objects, e.g. aquatic plants, coral reefs, kelp, sponges and

seabed structures in the video. Fish species classification on the

other hand aims to recognize the species of the detected fish from

the set of various classes.

In the last two decades, numerous image processing and ma-

chine learning algorithms have been proposed for fish species

classification. Early methods proposed for this task can perform

species classification in controlled environments only, for exam-

ple using dead fish samples on the fishing vessel or in the labora-

tory, based on the shape and colour information (Strachan and

Kell, 1995). 3D modelling of fish using laser light was proposed

by Storbeck and Daan (2001) to measure fish dependent features

like length, height and thickness of certain species. Unconstrained

underwater fish classification is a more challenging task as the

videos acquired in such environments depict high variation of lu-

minosity, turbidity of water and background confusion due to

reef structures and moving aquatic plants. The similarity in shape,

colour and texture of different fish species (inter-class similarity)

and differences among the same fish species (intra-class dissimi-

larity) due to changes in orientation of freely moving fish pose

yet another challenge in accurate species classification. To address

this issue, two different classical methods are proposed by Rova

et al. (2007) and Spampinato et al. (2010) to classify fish based on

their texture pattern and shape in natural, unconstrained envi-

ronments. However, those methods only produce good results for

fish species that were highly distinguishable due to rich and

clearly defined texture patterns.

Recent trends in fish species classification are moving towards

the application of machine learning algorithms in conventional

computer vision-based approaches. In this regard, early attempts

with modest success rates include applying principal component

analysis (PCA) (Turk and Pentland, 1991) and linear discrimi-

nant analysis (Mika et al., 1999) to extract key features. More re-

cently, sparse representation classification (SRC) in combination

with PCA (Hsiao et al., 2014) has been applied to fish classifica-

tion with success rate of 81.8% on their dataset of 1000 fish im-

ages of 25 different species. These approaches are all based on the

assumption that visual features of fish are linearly separable from

the surrounding underwater variability. Natural variation and

the rich background increases the requirement for nonlinearity in

the mathematical modelling which results in a compromise on

the performance of the algorithm in the classification task.

Gaussian mixture modelling and support vector machines (SVM)

were employed in Huang et al. (2015) to train on fish images.

Their algorithm yielded improved results over linear PCA and

standalone SVM with 74.8% recognition rate on a dataset of

about 24 000 images of 15 different fish species (Duan and

Keerthi, 2005; Huang et al., 2015). artificial neural networks

(ANNs) were first introduced in the middle of 20th century, but

went out of favour due to the high levels of supervised training

required and their inability to solve highly complex problems.

ANNs have seen a resurgence as a preferred method for image

classification because Krizhevsky et al. (2012) were able to achieve

a substantial 10% reduction in error rate on the large-scale

ImageNet benchmark dataset (Deng et al., 2009) for object recog-

nition by using an ANN variation known as Convolutional

Neural Networks (CNNs). The importance of this special type of

ANN was quickly recognized, along with a very broad range of

applicability in the domain of artificial intelligence. The term

Deep Learning suddenly became ubiquitous for neural networks

as they learned hierarchical representations of data and the repre-

sentation improved with the increase in the number of layers.

These layers in ANN can be categorized based on their mathemat-

ical operation to extract certain features that represent the input

image. For example, convolution layers in CNN perform convo-

lution operation to find the correlation among the same class fea-

tures using tuneable weights. This is followed by a nonlinear

activation function. There are several types of nonlinear inducing

layers like Rectifying Linear Units, Sigmoid and Hyperbolic

Tangent (LeCun et al., 2004; Simonyan and Zisserman, 2014; He

et al., 2016). The choice of nonlinear layer is dependent on nonli-

nearity and complexity of input data for better data-to-feature

mapping. Subsampling layers (often called pooling layers) picks

the relevant data out of convolution layer based on their signifi-

cance and discards the rest. The output layer with number of

nodes equal to the number of classes to be classified, is usually a

fully connected layer that produces predicted labels or scores per

node that represents each class. The predicted label is then

matched with the ground truth label to calculate accuracy.

In the last three decades, different types of layers have been

proposed which can be plugged into a neural network and trained

via back-propagation of gradients (Rumelhart et al., 1986; LeCun

et al., 1989, 2015). Convolution is a well-known operation in the

signal processing and computer vision community. Conventional

computer vision techniques make frequent use of the convolu-

tional operation, especially for edge detection and noise reduc-

tion. LeCun et al. (1989) showed that the filters of the

convolution operation that are useful for the task at hand can be

automatically learned in a neural network. CNNs and their vari-

ants are considered to be state-of-the-art in image classification

tasks with promising performance on handwritten numerical

digit classification, facial recognition and generic object recogni-

tion (Larochelle et al., 2009; Lee et al., 2009; Simonyan and

Zisserman, 2014). Each convolutional layer in the CNN is fol-

lowed by a nonlinearity which allows the network to capture non-

linear dynamics of input data. In our case, water murkiness,

abrupt changes in the underwater luminosity and variation in the

sea bed are some of the main factors that require complex yet

nonlinear mathematical modelling for the problem of automatic

classification as their data distribution cannot be modelled by a

linear classifier. Therefore, choice of nonlinearity makes a signifi-

cant impact on the overall performance and is still an active area

of research (LeCun et al., 2015). Classification is performed di-

rectly using additional fully connected layers at the top of the

CNN (LeCun et al., 2004; Chatfield et al., 2014) using features of

the last convolution layer or by combination of features from sev-

eral convolution layers (Ouyang and Wang, 2013). Alternatively,

a separate final classifier is also used, with SVM and K-nearest

neighbour being the popular choices in the literature. A primary

disadvantage of the increased number of layers in neural networks

especially CNN is the requirement for larger amounts of training

data and hence, computational burden. A CNN approach
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adopted by Salman et al. (2016) for fish species classification in

an unconstrained underwater environment demonstrates the ef-

fectiveness of large datasets. The approach yielded average classifi-

cation rate of over 90% on the LifeCLEF14 and LifeCLEF15

benchmark fish datasets (http://imageclef.org/).

In this article, we have employed deep CNNs pre-trained on

large, publicly available image sets, for extraction of features from

images of 16 different species of fish from the coastal waters of

temperate and subtropical Western Australia, and applied a final

classification step utilizing a linear SVM with a one-vs.-all strat-

egy. Training a deep model from scratch requires thousands of la-

belled image examples, which were not available for the specific

dataset used. Therefore, our approach opts for a transfer learning

methodology to classify the fish species in the video dataset. To

realize transfer learning in our methodology, we use several deep

CNN models that are pre-trained on the vast benchmark

ImageNet dataset (Deng et al., 2009) for Large-Scale Visual

Recognition Challenge (http://image-net.org) to extract feature

representations of fish images in our dataset before classification.

The transfer learning approach is beneficial when the available

training data is not large enough, as in our case, or has few exam-

ples of different variabilities. Unavailability of sufficient training

datasets in the case of fish classification causes the network to

overfit on the training data, resulting in high recognition accuracy

on the training data, but very low accuracies on test data. Using a

pre-trained network alleviates the requirement of training a deep

CNN which requires large amount of training data along with

high computational power.

The objective of this research is to determine the accuracy that

can be achieved for fine-grained fish species classification using

deep learning techniques. A cross-layer pooling algorithm is pro-

posed that uses a pre-trained CNN as a generalized feature detec-

tor, thus avoiding the need for a large amount of training data.

Classification is performed by a SVM on the features computed

through the proposed method of cross-layer pooling, which re-

sults in more accurate predictions by the classifier on test images.

Material and methods
Study area for dataset collection
Videos were collected from several baited remote underwater

video sampling programs that occurred between Cape Naturaliste

and the Houtman Abrolhos islands in the temperate and subtrop-

ical coastal waters of Western Australia during 2011–2013. Videos

were collected from kelp, seagrass, sand and coral reef habitats be-

tween 5 and 50 m of water depth. The sampling location of fish

spread across the coast of Western Australia and does not repre-

sent the actual frequency distribution of target fish species in that

location. The data used in this study are extracted from the videos

in a way to achieve the minimum number of samples required to

train the classifiers hence, covers only a fraction of actual re-

corded data.

Camera system description
The video imagery of fish was captured from baited remote un-

derwater stereo-video systems (stereo-BRUVs). These systems are

a practical and cost-effective solution for surveying reef fish

across a range of depths and habitats (Harvey et al., 2013). The

stereo-BRUVs that this imagery was collected from consisted of

two Sony CX12 high-definition video cameras in purpose-built

underwater housings. The housings are mounted on a base bar,

0.7 m apart and inwardly converged at 8 degrees, to provide an

optimized overlapping field of view from the two cameras.

Detailed information on the design and photogrammetric specif-

ics of these systems is presented in Harvey and Shortis (1995,

1998), Shortis and Harvey (1998), and Harvey et al. (2010). Each

system was baited with �1 kg of crushed Australian Pilchards,

(Sardinops sagax) which was placed in a plastic-coated wire basket

and suspended 1.2 m in front of the two cameras (Hardinge et al.,

2013). Pilchards were chosen as bait because they have been com-

monly used in stereo-BRUVs studies in Western Australia (e.g.

Watson et al., 2005, 2007, 2009; Harvey et al., 2012), and have

been shown to be a strong fish attractant (Dorman et al., 2012).

The systems were left to capture video on the seafloor for 60 min

(Watson et al., 2005; Bernard et al., 2014) during daylight hours.

Video analysis
Imagery of the 16 focal species shown in Table 1 was collected

during analysis of the stereo-BRUVs video sequences. The focal

species were selected because they were either:

(i) important species for recreational and commercial fishing

(e.g. Choerodon rubescens, P. leopardus, Lethrinus nebulosus,

Carangoides fulvoguttatus, Scombridae spp., Lethrinus sp,

Pagrus auratus,and Lethrinus atkinsoni),

(ii) numerically abundant and made a high contribution to the

fish assemblages (e.g. Coris auricularis),

(iii) indicator species for ecosystem based fisheries management

(e.g. C. auricularis, Scarus ghobban), or

(iv) provided challenges for separation of similar species (e.g.

Pentapodus porosus and Pentapodus emeryii) for identifica-

tion due to contrasting shapes and movement patterns (e.g.

Abudefduf bengalensis and Thalassoma lunare).

Other species were also included in the video imagery because

image data sets generally require an “other” species class contain-

ing objects that are not of interest to the task at hand, or are false

negatives that are not classified as a species of interest.

Video clips of the 16 species were captured during the routine

analysis used to determine the relative abundance of the species.

Counts and measurements of the MaxN (maximum number; see

Cappo et al., 2001, 2003a,b, 2006) of fish of any one species iden-

tified within the field of view at the same time were made using

EventMeasure Stereo software (www.seagis.com.au/event).

During the image analysis between 50 and 120 individual 10 sec-

ond video clips of each of the 16 focal species were captured.

From the video clips, still images were extracted, re-sized and

cropped to a consistent size of 224 by 224 pixels. CNN architec-

tures work on pre-defined image sizes which were 224 by 224 in

our case requiring the original images to be resized for process-

ing. Figure 1 presents samples of the training, validation and test

images for the 16 fish species classes and the other species class.

Deep CNN architecture
A deep CNN is a mathematical parametric architecture with an

input layer, several hidden layers and an output layer (LeCun

et al., 2004). Starting from the input layer, the hidden layers are

connected with each other by a set of tuneable weights and each

layer represents more complex features of the input image. There

are several types of hidden layers in CNN architecture as ex-

plained in the Introduction Section.
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Table 1. Fish species distribution in the captured data for training, validation and test sets along with sample images.

Species Sample image Total images Training set Validation set Test set

P. porosus 103 60 12 31

P. emeryii 92 42 15 35

C. rubescens 100 45 22 33

A. bengalensis 100 56 12 32

C. cyanodus 110 59 11 40

P. leopardus 97 43 22 32

L. nebulosus 105 51 11 43

C. fulvoguttatus 108 64 10 34

L. carponotatus 103 63 10 30

S. ghobban 94 50 13 31

Scombridae spp. 89 52 7 30

Lethrinus sp 98 46 15 37

T. lunare 101 58 12 31

C. auricularis 141 91 12 38

P. auratus 101 52 11 38

Continued
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The mismatch or error between the predicted label from the out-

put layer and actual label is reduced by training the network with

respect to the network weights through an iterative procedure such

as error back propagation with weight adjustment (Hinton and

Salakhutdinov, 2006). An illustrative CNN is shown in Figure 2.

Our pre-trained model on ImageNet dataset is not designed for

fish species recognition, but the 1.2 million images provide a very

large and diverse number of generic objects. Training on a dataset

that contains large variations of objects and backgrounds in the

images makes the machine learning algorithms like deep CNNs

extract unique information for the objects of interest based on their

colour, texture and shape in the images. Therefore, a suitable

network learns to capture visual patterns of various objects and if

there are an adequate number of examples for each object in the

dataset, the generalization capability of the network increases. Such

a trained network yields task-specific information on datasets that

are not even used for training. Examples of such pre-trained net-

works include AlexNet (Krizhevsky et al., 2012), VGGNet

(Simonyan and Zisserman, 2014), and ResNet (He et al., 2016),

which the authors have made available freely for the research com-

munity to use as generalized feature extractors. We have used the

trained CNNs for fish species classification in the transfer learning

setup. In our transfer learning setup, deep CNN models used are

based on three different architectures; AlexNet (Krizhevsky et al.,

2012) is comprised of five convolutional layers and four pooling

layers. VGGNet (Simonyan and Zisserman, 2014) is based on a

unique architecture in which the size of all convolutional filters is

3 � 3 � 3 Residual Net (He et al., 2016) learns a residual function

instead of the whole input to output mapping, which makes the

learning easier and hence scalable to very deep models. The net-

work makes use of skip connections along with a separate branch

which must learn just a residual function since the original input is

propagated to the next layer using the skip connection. These skip

connections also alleviate the vanishing gradient problem as the

gradient flows directly through the skip connection regardless of

the gradient through the branch. Figure 3 conveys the main idea of

residual learning. The ResNet-152 model used in our experiments

is a Residual Network having 152 layers. The five pooling layers in

ResNet splits the architecture into five major modules. Each mod-

ule is divided into many different operations such that the size of

the activations is preserved.

Fine-grained classification method
Traditional classification methods are still prevalent for the task

of fish classification despite recent advancements in machine

learning. A prominent example is the work of Huang et al.

(2015), who employed shape, texture, and colour features of a

fish in combination with a hierarchical classification scheme to

identify fish species. These approaches are highly dependent on

the feature extraction part which is responsible for the identifica-

tion of useful features to be fed to the classifier. Most of the devel-

opment time is devoted to careful feature extraction engineering

based on expert domain knowledge. Usually, the classical classifi-

cation pipeline is composed of pre-processing on images, feature

extraction and finally classification (Shortis et al., 2016). This

classification course has been completely altered with the recent

advancements in the domain of deep learning (LeCun et al.,

2015). This usually involves pre-processing on raw images which

includes image enhancements, resizing or cropping followed by

feature extraction which can be achieved through a trained deep

multi-layer neural network to get invariant and abstract represen-

tation of input image in feature space. CNNs learn a hierarchical

representation of the input in which the initial layers detect very

basic patterns like edges and gradients, while layers located on

top of the hierarchy learn complex patterns which are useful for

the classification task at hand. The concept of hierarchical feature

learning is illustrated in Figure 4 where the network was not spe-

cifically trained for fish images therefore, patterns found by the

network are generic. Recent studies have shown that activations

from deep CNNs can be employed as a universal image represen-

tation (Razavian et al., 2014). Fine grained classification is diffi-

cult because the separation of one class from another is subtle.

Relying on the stochastic optimization algorithm to learn the dis-

tinct features for each class can potentially lead to poor generali-

zation of the network on unseen examples. Image observations

are noisy and the network can overfit the noise instead of

discovering the real distribution of different classes. A parts-based

pooling method (Zhang and Farrell, 2012) suggests the use of

manual parts annotation for fine-grained classification by pooling

together only features that belong to a specific part annotation.

This forces the network to focus on the annotated areas in

the image for classification. The network is forced to attend to

the parts, allowing differentiation between different classes, re-

sulting in much better generalization as compared with using an

end-to-end learning approach (Xiao et al., 2015). The final image

representation is formed by concatenating different feature vec-

tors obtained after pooling. However, obtaining precise, manual

annotation of important image features by a human is expensive.

The cross-layer pooling method (Liu et al., 2015) suggests the use

of convolutional layer activations at the top of the hierarchy as

Table 1. continued

Species Sample image Total images Training set Validation set Test set

L. atkinsoni 105 56 16 33

Other 562 421 26 115

Total 2209 1309 237 663
Total (Without Others) 1647 888 211 548
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parts annotation from a network that is pre-trained on a large

dataset. The annotation provided by the convolutional layer acti-

vations may well be inferior to that provided by a human expert.

However, since there are orders of magnitude more annotations

due to the large number of feature maps present in the layers on

the top of hierarchy, the annotations can give performance

comparable to a careful, manual parts annotation. Cross-layer

pooling requires activations from two different layers with the

same spatial dimensions, due to point-wise multiplication opera-

tion. Lower layer activations serve as local features while higher

layer activations serve as parts annotations. Therefore, features in

the lower layers are pooled after weighting them with the higher

Figure 1. Sample images from the data where each row contains images of a single species. The first two images in each row are samples from the
training set, the next two images are samples from the validation set and the last two images are samples from the test set. This diagram also
demonstrates the complexity and challenges in the data in the form of murkiness, blurriness, low texture information of fish and luminosity variation.
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layer activations. We used deep networks that are pre-trained on

the ImageNet benchmark dataset for feature extraction. Figure 5

presents an overview of the cross-layer pooling method. The im-

age feature vector is obtained by concatenating pooling results

from all the channels. The size of the feature vector produced for

each image after cross-layer pooling is r � d � D where d is the

number of feature maps in the lower layer L1, D is the number of

feature maps in the upper layer L2, and r is the local region size.

Mathematically, the method of cross-layer pooling can be repre-

sented as:

P ¼ RðF L1
� F 1

L2
Þ; RðF L1

� F 2
L2
Þ; . . . ; RðF L1

� FD
L2
Þ

� �

where L1 refers to the lower layer used for extraction of local fea-

tures, L2 refers to the upper layer serving as parts annotation, and

R �ð Þ refers to the operation of sum pooling. Element-wise multi-

plication is performed followed by sum pooling for obtaining the

feature vector using a single feature map serving as parts annota-

tion. Features vectors obtained by using D feature maps where D

is number of feature maps in L2 are concatenated together to

form final image representation P. For using larger region sizes,

the whole region is multiplied by a single value in the upper layer

activations (centre of the region). We experimented with local re-

gion sizes of 1� 1 and 3� 3 for extraction of local features from

the lower layer (Figure 5). A dimensionality reduction step was

introduced to make the computations tractable. Activations near

the image boundary were discarded in case of high dimensional

feature maps as the activations were polluted by outliers. We eval-

uated different pooling strategies and found sum pooling to be

Figure 2. Illustration of a small CNN with alternate arrangement of convolution and pooling layers followed by fully connected layers at the top.

Figure 3. Illustration of residual learning. The input is directly propagated
to the output through a skip connection, therefore, the network must
learn just a residual function which should be added to the input.
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the most effective technique for fish classification. Power normal-

ization was applied to the obtained feature vector followed by

standardizing and transformation into a unit vector. Calculating

per channel mean from each image separately for mean normali-

zation instead of using the pre-computed ImageNet means signif-

icantly improved the classification performance. The colour

distribution between images from ImageNet and the underwater

fish images is different, as highlighted in Figure 6. A one-vs.-all

linear SVM was trained on the cross-pooled features for classifica-

tion of the fish species. One-vs.-all is a strategy for training a

multi-class configuration in which a separate SVM is trained for

each of the classes while treating the rest of the classes as a single

negative class. Final classification is made by evaluating the SVMs

trained for each class. As the feature extractor is not directly

trained on the task at hand, it reduces the probability of network

over-fitting on training data, which leads to much better generali-

zation to unseen cases. We experimented with different system

configurations for cross-layer pooling. The experiments involved

use of the three different pre-trained CNNs on ImageNet dataset.

The only constraint on selection of the layers for cross-layer pool-

ing is that they must have the same spatial dimension. The choice

of layers was based on empirical analysis, as considering all possi-

ble combinations of layers were computationally impractical. We

used the fourth and fifth convolutional layer outputs for applica-

tion of cross-layer pooling from a pre-trained AlexNet as the spa-

tial dimensions were the same. Conv5, comprising a set of three

consecutive convolutional operations, is the last convolutional

module in VGGNet before the fully connected layers.

Accordingly, we used the Conv5_1 and Conv5_3 layers in

VGGNet. We chose the fourth module in ResNet-152 model by

cross-pooling activations from 15th and 20th layers within the

fourth module, annotated as 4b15 and 4b20, respectively. If

enough computational resources are available, the best combina-

tion of layers for any classification task can be evaluated automat-

ically by performing a grid search on all possible layer

combinations and assessing their performance on an independent

validation set.

The system was implemented using a commercial software

package (MATLAB) with MatConvNet (Vedaldi and Lenc, 2014)

and LibSVM (Chang and Lin, 2011). The implementation was

CPU specific. Experiments were conducted on a server with Intel

Xeon E5-2630 v3 processor (2.4 GHz) and 64 GB Ram.

Results
A classification accuracy of 94.3% was achieved when classifying

only the 16 fish species which we focussed on for this trial. All

other evaluations include the other species class which contains a

number of fish species which are non-relevant to the research

goals, but can be encountered while underwater sampling. The re-

sults obtained by the different model configurations are summa-

rized in Table 2. The model based on ResNet (He et al., 2016) by

cross-pooling activations from layer 4b15 and 4b20, with local

region size of 3� 3 and training a linear SVM on top of the

cross-pooled features, was able to achieve the highest classifica-

tion accuracy of 89.0% if the other species class is included. A

change to a local region size of 1� 1 produces a slightly inferior

result of 86.9% classification accuracy for all classes. In compari-

son, the AlexNet and VGGNet model configurations produced

significantly degraded results. Application of the linear SVM di-

rectly to features from the Pool5 layer of the ResNet-152 model

resulted in a classification accuracy of 71.49%, highlighting the

improved performance produced by cross-layer pooling. We re-

duced the dimensionality of the 3� 3 local features in ResNet-

152b model from 9216 (3� 3� 1024) to 512 before cross-layer

pooling using PCA. Dimensionality reduction can be useful in or-

der to reduce the size of features from cross-layer pooling, allow-

ing use of larger region sizes as well as more feature maps.

Adapting a larger region size even with the use of PCA improved

accuracy of the system due to availability of local context. Further

analysis of the accuracy of the four CNN models can be con-

ducted using the precision and recall of the classifier. Recall and

precision are a more informative way to judge the performance of

a classifier, especially if the classes are skewed.

The precision of a classifier is a measure of correctly classified

images out of all the images predicted to belong to a specific class.

Mathematically,

Figure 4. Hierarchical representation learning by a CNN where the initial layer detects simple patterns like edges and gradients while higher
layers detect more abstract features (Yosinski et al., 2015).
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Figure 5. The cross-layer pooling pipeline includes feature extraction from two different layers of a network pre-trained on the ImageNet
dataset. Lower layer features serve as local features (top left) while upper layer features serve as parts annotation (top right—colourmap goes
from blue to red indicating the magnitude of the features). Features are cross-pooled/fused and passed to a SVM for final classification.

Figure 6. Per channel mean image subtraction from the left image. The middle image is normalized with the pre-computed means from
ImageNet dataset. The right image is normalized by computing the per channel mean from the image itself and then converted to grayscale
(�1 to 1 range) for visualization using a heat colour map.
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Precision ¼ True Positives

True Positivesþ False Positives

Recall of a classifier on the other hand is a measure of correctly

classified images out of all the images actually belonging to a spe-

cific class. Mathematically:

Recall ¼ True Positives

True Positivesþ False Negatives

The obtained precision and recall graphs for different model

configurations are presented in Figure 7.

In general, the precision and recall graphs confirm the classifi-

cation accuracy levels shown in Table 2, with very few exceptions.

In some cases, the ResNet-152 model with a 1� 1 local region

produces the best result, but these exceptions reflect the small dif-

ference in the classification accuracy between the two sizes of lo-

cal region. Precision is generally higher than recall, indicating

that false negatives are more common than false positives. The

precision graph shows high values for a number of individual

species, indicating that the number of false positives is very low.

The lesser precision in

the case of sub-species classes, such as Scombridae spp., and

the other species class indicates higher levels of false positives, as

the algorithm incorrectly labelled a larger number of images as

belonging to these classes. The sub-species classes and other spe-

cies class are comprised of a number of different species resulting

in high intra-class variance. This leads to ambiguity regarding as-

sociation of an image to a particular class. Unlike the precision

graph, the recall graph indicates that, with just one exception, no

class achieves a 100% result. For virtually every model and every

class, there are examples of images being assigned incorrectly to

the other class. In other words, in almost every model, a small

percentage of fish are not being recognized as belonging to their

correct class. The confusion matrix for the ResNet-152b model is

presented in Figure 8. Most the false positives and false negatives

are caused by resemblance between similar species, or with the

other species category. For example, inter-class similarities cause

false positives and false negatives between Lethrinus sp and L. neb-

ulosus due to the commonalities between examples from the sub-

species class and the specific species class. The confusion matrix

confirms that precision should be more favourable than recall be-

cause many fish are incorrectly assigned to the other species class,

as compared with false positives in the specific class. To provide a

more detailed analysis of the ResNet-152b model, the misclassi-

fied images by the algorithm are presented in Figure 9. Certain

fish categories present in the others species class have high resem-

blance with the rest of the 16 classes. Therefore, the inaccurate as-

signments in those classes can be clearly observed from the

confusion matrix and misclassified images. In situations where

the species are either camouflaged or the distinct parts are

unrecognizable, the classifier predicts them to belong to the other

species class due to higher prior probability of the other species

class, as compared with the rest of the classes. Classification errors

are also introduced due to major occlusions in the image. If we

consider the misclassified images for P. porosus, P. emeryii, C.

rubescens, and Lutjanus carponotatus species, the key areas of pat-

terns and texture distinguishing these species are missing (Table

1). There was only a single misclassification for A. bengalensis

and S. ghobban species due to occlusion with aquatic plants.

Background clutter and camouflaged fishes resulted in misclassifi-

cation of images in P. leopardus, C. fulvoguttatus, Scombridae

spp., C. auricularis, P. auratus, and L. atkinsoni species.

Choerodon cyanodus and T. lunare fish species had a small region

with a recognizable pattern which allowed them to be distin-

guished even if the rest of the structure was unrecognizable.

Seven images in the other species class were labelled as Scombridae

spp. due to high similarity between Scombridae spp. and a specific

fish species in the other species class.

Discussion
The most important outcome of this research is the classification

accuracy achieved. With the other species class included, the accu-

racy of the classification is 89.0%, which is competitive with or

exceeds other recently reported results on fish species identifica-

tion tasks (Hsiao et al., 2014; Huang et al., 2015; Salman et al.,

2016). If the other species class is excluded, the classification accu-

racy within the 16 species classes is 94.3%, which is competitive

with the identification rates of human experts for similar tasks

(Culverhouse et al., 2003).

In Table 3, we compare the performance of our proposed

method for species classification with two existing classification

methods, using the fish image data set including the other species

class. The results for the accuracy of the other two classifiers are

significantly degraded by the inclusion of the other species class,

which suggests that these methods are not well suited to fish clas-

sification in real-world settings. SRC for fish classification (Hsiao

et al., 2014) uses a dictionary learning based approach to find a

sparse representation of the input and assumes different fish spe-

cies and the background to be linearly independent of each other.

This linear independence assumption is not true for the captured

data, resulting in poor performance for the SRC based classifica-

tion method. The end-to-end learning framework presented by

Salman et al. (2016) was unable to generalize well on the data set

captured in the Australian waters, despite being based on CNNs.

The major problem associated with the training of any deep net-

work using end-to-end learning is over-fitting on the training set.

Despite the use of data-augmentation to increase the size of the

captured data by synthetic transformations, the data is neverthe-

less comprised of a very limited number of images that are not

sufficient for training a CNN from scratch (Salman et al., 2016).

Table 2. Results from different model configurations for cross-layer pooling.

Model Layers used in cross-layer pooling Accuracy

AlexNet Convolution layer 4 and 5 65.8%
VGGNet Convolution layer 1 and 3 of fifth module 78.1%
ResNet-152a Convolution layer 15 and 20 of fourth module 86.9%
ResNet-152b Convolution layer 15 and 20 of fourth module 89.0%
ResNet-152c Classifier trained on MaxPooling layer 5 only 71.5%
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Most of the deep learning based approaches require huge

amounts of labelled training data to achieve successful results. To

further validate the potential of transfer learning, we also conduct

a similar experiment on the benchmark dataset of LifeClef 2015

(http://www.imageclef.org/lifeclef/2015/fish) which is extracted

from the Fish4knowledge repository (http://groups.inf.ed.ac.uk/

f4k/). LifeClef’15 dataset contain more than 20 000 images of fish

divided into 15 classes of species, details of which is given in

Salman et al. (2016). For each species, this dataset has different

number of available images. For this new experiment, the two al-

gorithms in Table 3 i.e. SRC by Hsiao et al. (2014) and CNN by

Salman et al. (2016) were trained end-to-end on randomly se-

lected 5% images of each class of fish species. For our proposed

architecture, we only trained the SVM (for classification) on fea-

tures extracted by the same pre-trained ResNet-152b with cross-

layer pooling on the images of LifeClef’15 images. This is the

same experimental protocol as was followed with the other data-

set. To monitor the training process for optimum accuracy, 5%

images per class were reserved for validation set and the rest of

the images which compose 90% of the dataset were used for test-

ing. Overall, around 1200 images were used for training. The rea-

son behind using small number of images for training is to

emphasize on the better generalization capability of the proposed

method under transfer learning protocol that does not require

any data for training from the two datasets presented for compar-

ative study. Our proposed method achieved 96.73% accuracy on

Figure 7. Performance comparison in terms of %precision and %recall between different models for each fish species.

Figure 8. Confusion matrix obtained for the classifier based on ResNet-152 model.
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the test set of LifeClef’15 dataset while SRC and CNN by Salman

et al. (2016) achieved 65.42 and 87.46% accuracies, respectively.

The overall better performance by all three methods in

LifeClef’15 dataset is due to the less challenging environmental

conditions and relatively clear images as compared with the other

dataset. If we increase the training dataset size with more than

5000 images, the CNN in Salman et al. (2016) with end-to-end

training produces 94.1% accuracy, marginally behind our newly

proposed method. Further increase in the training data size may

increase the performance due to over-fitting.

The focus of this work is to employ deep learning architecture

in the form of a CNN to extract distinguishing features of fish

that are uniquely dependent on a specific species. The motivation

behind using such an approach is to model highly nonlinear and

complex attributes in underwater imagery of fish. These attributes

are not modelled effectively by conventional shallow machine

learning algorithms and image processing techniques (Hinton

and Salakhutdinov, 2006; Larochelle et al., 2009). Automated sur-

veillance of underwater footage requires fish detection, classifica-

tion and tracking in unconstrained environments containing

variations in lighting, pose, background, and water turbidity.

This becomes a fine-grained classification problem due to low

inter-class variation and high intra-class variation of the fish spe-

cies. Fine-grained classification techniques force the network to

learn to attend to subtle features that are important for the

classification of species at hand. However, a CNN trained using

an end-to-end learning approach on datasets with a large number

of classes and a small number of images per class is highly prone

to over-fitting. Various approaches to automatic fish species clas-

sification are presented in Rova et al. (2007), Fablet et al. (2009),

Blanc et al. (2014), and Hsiao et al. (2014), that employ shallow

machine learning approaches on different datasets, typically with

much less environmental variation. As a comparative study, we

used their algorithms on our dataset but failed to achieve signifi-

cant performance on fish species classification. Hence, we do not

report these results here. This strengthens the claim that classifi-

cation performance is severely compromised on datasets where

explicit features of fish, such as texture, colour and shape, are not

highly distinguishable due to background confusion, turbidity or

poor quality images.

Qin et al. (2015) and Salman et al. (2016) report on fish species

classification in unconstrained environments, where CNNs were

used to extract fish dependent features from datasets containing

inadequate numbers of labelled examples of fish species necessary

for training deep networks. Promising results for their datasets

were achieved despite the lack of samples, but the approach failed

to cope with the more complex datasets where there is difficulty

in classifying fish species due to water murkiness, inter-species

similarity, intra-species dissimilarity, poor light conditions and

changes in orientation of fish (see Table 2). This gives rise to the

Figure 9. Images with misclassified class tags. The left-most column indicates the actual class.
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necessity of meticulously fine-tuning the generic deep CNN ar-

chitecture to enhance the effectiveness of the discrimination in-

formation in the feature space.

The representation and modelling power of CNN increases

with the increase in the number of layers (LeCun et al., 2015)

where each successive layer performs a nonlinear computation on

its inputs. ResNet-152 has 152 layers which makes it a more pow-

erful model compared with the other two models. Accordingly,

the ResNet model achieves the highest species recognition rate of

the three models tested. Any pre-trained CNN model can be

plugged into the proposed cross-layer pooling framework. We ex-

pect better, even more complex models to emerge with time,

which can replace the current models to achieve further improve-

ment in the recognition rate. There must be a point of diminish-

ing returns, at which more complexity results in no significant

improvement, but at present a larger number of layers does im-

prove the accuracy of classification.

This flexibility can be extended to different fish image data

sets. Transfer learning is a strategy for employing pre-trained

deep CNNs as generalized feature extractors. The features ex-

tracted by the CNN are very generic, allowing the features to be

used for classification of any fish species. We demonstrated this

generic applicability by testing the proposed method on two dis-

similar fish species classification datasets.

The other species class has a higher prior probability of selec-

tion due to skewed classes. This makes false negatives much more

likely, especially in the case of isolated obscuration, resulting in

loss of recall for most species and loss of precision for the other

species class. A network trained to exhibit an explicit attention

mechanism can learn to focus on distinct features and ignore mis-

leading parts of the image, including occlusions and background

clutter. Attention based models will also allow the network to rec-

ognize species based on just a single distinct feature instead of us-

ing global image features, which can be misleading, as was the

case with C. cyanodus and T. lunare. Attention based models

might reduce the imbalance between precision and recall graphs

but complete evasion in the case of skewed classes is still a chal-

lenging task.

Since the feature extractor is not directly trained on the data,

there is a possibility that it will extract overlapping features for

two similar species, reducing the success rate of classification.

Distinguishing different species from one another depends on the

uniqueness of their features. The less than perfect classification

accuracy indicates that there is indeed some overlap between the

features extracted by the pre-trained CNN models. Removing the

other species class which comprises a large number of species will

clearly have a positive impact on the recognition performance, as

most of the misclassifications are directed towards this class.

Notwithstanding these issues, the aims of the species classification

task should always be the primary driver for the selection of the

number of classes and the inclusion of the other species class.

Although other species class is virtually indispensable in the

unconstrained underwater environment, the minimum number

of species classes is a pragmatic decision to ensure that all species

of interest can be categorized.

The method of cross-layer pooling adds extra computational

complexity making it difficult to adapt to a real-time implemen-

tation. A single forward pass of the network followed by dimen-

sionality reduction and cross-layer pooling pushes the processing

time of a single image to �800 ms. Efficient graphics processor

unit (GPU)-based implementation of the whole system can re-

duce the computation time by a significant margin. Some recent

fine-grained classification approaches are focused on using a sin-

gle network with fully connected layers at the final decision stage

for classification, substantially reducing the time required to pro-

cess an image (Lin et al., 2015; Xiao et al., 2015).

Methodologies based on performing just a forward pass on a

CNN can allow development of systems with real-time perfor-

mance. Different attention based models have been recently pro-

posed in the literature for fine-grained classification where the

network learns to attend to parts useful for classification, making

the predictions more confident and accurate (Lin et al., 2015;

Xiao et al., 2015). Fish classification in unconstrained underwater

environments is also a fine-grained classification task where the

classifier has to ignore the background and clutter, focusing on

just the shape and texture of the fish or even a single distinct fea-

ture like the tail, ignoring the rest of the features which can be

misleading. Spatial Transformer (Jaderberg et al., 2015) is a dif-

ferentiable component which can be attached to any CNN allow-

ing it to be trained with an end-to-end learning approach. It

could prove useful in fish classification, especially in conditions

where the input image is not well aligned.

In a real world implementation of a species classifier, fish will

be imaged at a wide range of resolutions, will be in a variety of

orientations with respect to the image, and can be swimming

strongly, along with the well-known problems of partial obscura-

tion and poor image quality due to turbidity. The training set

used here comprises individual still images with fish in a near-

normal, lateral aspect, whereas in practice, fish may be oriented

in different directions and tracked across many individual frames

of the video sequence. Whilst the availability of multiple frames

affords the ability to majority vote a species classification, the po-

tentially disruptive effects of resolution variations, orientation

changes and swimming action will require additional adaptations

of the algorithms. For simple measurements of length, tracking

across multiple frames has a proven advantage of improved preci-

sion of the mean length (Shafait et al., 2017), whereas the changes

in body shape and orientation may prove multiple frames to be

less of a clear advantage for species recognition. One potential re-

sponse is for the algorithms to actively select fish only in the

near-normal, lateral aspect in order to prevent the disruption to

the classification process.

Table 3. Comparative results for fish species classification using our dataset of 16 fish species of interest and an additional class that includes
all other species that are not of interest (second column).

Method Accuracy (our dataset) Accuracy (LifeClef’15)

SRC (Hsiao et al., 2014) 49.1% 65.42%
CNN (Salman et al., 2016) 53.5% 87.46%
Proposed method of CNN plus SVM 89.0% 96.73%

Classification accuracy on benchmark dataset of LifeClef’15 that is taken from large Fish4Knowledge (http://groups.inf.ed.ac.uk/f4k/) repository.
Bold entries indicate the best scores on accuracy as compared to all other methods on specific datasets.
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This method is particularly useful in cases where automated

classification of fish species is desired. In fact, in this age, rapid

marine/fresh water body exploration to monitor trends in species

abundance of fish is crucial which is directly affected by higher

pace of today’s global environmental changes. To achieve this, ef-

fective methods in automatic fish species classification are re-

quired. The proposed methodology is a step forward in this

direction. Our system is based on machine learning and hence

needs to be trained (only requires class annotation) for the rele-

vant classes but the number of images required for training is low

without compromising on classification accuracy. This has been

validated by our experiments. The method can also be coupled

with different fish detection (Spampinato et al., 2014) and mea-

surements systems (Shafait et al., 2017) for development of a fully

automated system covering a wide range of fisheries related tasks.

Optimized implementations of the system can be produced to

achieve near real-time performance. Surveys are a particular ap-

plication which can largely benefit with this automation using the

proposed cross-layer pooling method covering both online and

offline image classification.

Conclusions
We presented an automatic method that exploits existing pre-

trained deep neural network models for fish species classification

in videos captured in unconstrained underwater environments.

Our results are compiled in a challenging realistic scenario where

an additional class, that contains numerous fish species that are

not of interest, is included during classification. The major con-

tribution of this work is that it shows how to use CNN models

trained for a different classification task, for which sufficient la-

belled training data is available, for fish species classification

where labelled data is scarce. With this strategy, even when our

training data was limited, we were able to employ the deepest

CNN model so far (with 152 layers) and achieve state-of-the-art

results. We proposed a special cross-layer pooling approach that

combines features from different layers of the deep network for

enhanced discriminative ability. Wide spread use of the proposed

and similar automatic techniques will speed up the rate at which

marine scientists analyse underwater videos. A bottleneck of the

cross-layer pooling method is the extensive computations re-

quired which precludes the possibility of real time processing. An

essential future research direction is to develop strategies for fine-

grained classification by directly feed forwarding the images

through a pre-trained network to get the final classification re-

sults without the need for an external classifier.

Acknowledgements
The authors acknowledge support from the Australian Research

Council Grant LP110201008, which provided the primary fund-

ing for this study in addition to funding from a UWA Research

Collaboration Award (RCA) grant, Higher Education

Commission Pakistan Startup Research Grant 21-949/SRGP/

R&D/HEC/2016 and the King Abdullah University of Science and

Technology (KAUST) Office of Sponsored Research. Ajmal Mian

was supported by the Australian Research Council Fellowship

DP110102399. The authors also acknowledge Nvidia

Corporation, USA for their donation of GPU under their GPU

Grant Program. Nvidia GPUs were used to carry out simulations

in the work carried out in this article.

References
Bennett, S., Wernberg, T., Harvey, E. S., Santana-Garcon, J., and

Saunders, B. J. 2015. Tropical herbivores provide resilience to a
climate-mediated phase shift on temperate reefs. Ecology Letters,
18: 714–723.
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