
Semi-Automated OCR Database Generation for Nabataean Scripts

Adnan Ul-Hasan1, Syed Saqib Bukhari1, Sheikh Faisal Rashid1,
Faisal Shafait2, Thomas M. Breuel1

1Technical University of Kaiserslautern, Germany.
{adnan, bukhari, s rashid09, tmb}@cs.uni-kl.de

2German Research Center for Artificial Intelligence (DFKI), Kaiserslautern, Germany.
faisal.shafait@dfki.de

Abstract

A large amount of real-world data is required to
train and benchmark any character recognition algo-
rithm. Developing a page-level ground-truth database
for this purpose is overwhelmingly laborious, as it in-
volves a lot of manual efforts to produce a reason-
able database that covers all possible words of a lan-
guage. Moreover, generating such a database for his-
torical (degraded) documents or for a cursive script like
Urdu1 is even more complex and grueling. The pre-
sented work attempts to solve this problem by propos-
ing a semi-automated technique for generating ground-
truth database. It is believed that the proposed automa-
tion will greatly reduce the manual efforts for devel-
oping any OCR database. The basic idea is to apply
ligature-clustering prior to manual labeling. Two pro-
totype datasets for Urdu script have been developed us-
ing the proposed technique and the results are also pre-
sented.

1 Introduction

Urdu belongs to the family of cursive scripts where
words mainly consist of ligatures. Ligatures are formed
by joining individual characters and shape of a character
in a ligature depends on its position. Moreover, there are
dots and diacritics that are associated with certain char-
acters. Each ligature in Urdu is separated from other
ligatures or its own diacritics by vertical, horizontal or
diagonal (slanted) space (see Figure 1). In some cases,
the diacritic or dot may be surrounded by the main liga-
ture/character (see Figure 1-third character from right).

It is assumed in the context of the present work that
the smallest unit is a ligature, which may be either a
combination of many characters or a single non join-

1http://en.wikipedia.org/wiki/Urdu

Figure 1: Ligatures are made up of individual charac-
ters, but shape of character may change depending upon
its location in the ligature. Moreover, spacing between
ligatures may be slanted (as between first and second
ligature) or vertical (as between second and third liga-
ture).

able character. There are around 18, 000 ligatures in
Urdu script2, and a reasonable database of Urdu script
for recognition purposes must cover all ligatures. Other
cursive scripts like Arabic, Persian and many Indic
scripts share the same characteristics and this is a big
hindrance in developing reliable OCR tools for these
scripts.

In literature, many methods have been proposed to
overcome the problem of manual labeling process. One
approach is to use degradation models [1] on a synthet-
ically produced documents. Another approach is to find
the alignment of the transcription of the text lines with
the document image. Kanungo et al. [4] presented an
automatic methodology for generating character ground
truth for scanned document. A document is first cre-
ated electronically using any typesetting system, printed
and scanned. Corresponding feature points from both
versions of the same documents were found and then

2http://www.crulp.org/software/ling resources/UrduLigatures.htm

21st International Conference on Pattern Recognition (ICPR 2012)
November 11-15, 2012. Tsukuba, Japan

978-4-9906441-0-9 ©2012 ICPR 1667



the parameters of the transformation were estimated.
The ideal ground truth information was transformed ac-
cordingly using these estimates. Kim and Kanungo [5]
improved this method by presenting a more robust at-
tributed branch-and-bound algorithm. von Beusekom
et al. [13] proposed a robust and pixel-accurate align-
ment method. In a first step, the global transformation
parameters were estimated similar to [5], and in the sec-
ond step, adaptation of smaller regions was carried out.

Pechwitz et al. [7] presented the IfN/ENIT database
of handwritten Arabic names of cities along with
their postal codes. A projection profile method was
used to extract words and the postal codes automati-
cally. Mozaffari et al. [6] developed a similar database
(IfN/Farsi-database) for Farsi (Persian) handwritten city
names. Sagheer et al. [8] also proposed a similar
methodology for generating an Urdu database for hand-
writing recognition. Slimane et al. [11] developed an
Arabic printed text images database. This database was
synthetically generated which covers many fonts and
font-sizes.

Vamvakas et al. [12] proposed that a character
database for historical documents may be constructed
by choosing a small subset of images and then using
character segmentation and clustering techniques. This
work is similar to our approach; however, the main dif-
ference is the use of different segmentation technique
for Urdu ligatures and use of different clustering algo-
rithm. Due to large shape variations in Urdu ligatures,
its not possible to assign a single threshold for all types
during word segmentation step. Discussion on thresh-
old selection is given in Section 2.2.

This paper is organized further as follow: Section 2
describes the process of generating database in detail;
Section 3 presents the experimental evaluation of the
proposed method and concluding remarks are given in
Section 4.

2 Method

Starting with Binarization as the pre-processing step,
Urdu ligatures are extracted from the text images. These
ligatures are then clustered prior to manual labeling of
correct ligatures.

2.1 Pre-processing

Binarization is the only pre-processing step in cur-
rent work; however, skew detection and correction may
be included as further pre-processing steps. Local
thresholding technique [9] is used for the binarization
purpose. Fast implementation of this algorithm pro-
posed by Shafait et al. [10] has been used to speed-up

(a) An example of clean docu-
ment

(b) A document with narrow line-
spacing (written by a calligra-
pher)

Figure 2: Examples of Urdu scripts in our dataset.

the process. Two parameters, namely local window size
and k-parameter, are needed to be set empirically ac-
cording to the documents. The local window size is
taken to be 70× 70 and k-parameter is set to 0.3.

2.2 Ligature extraction

Ligature extraction may be carried out in two varia-
tions: one is to apply ligature extraction algorithm di-
rectly on the binarized image, and the second is to ex-
tract text-lines before applying ligature extraction. The
former is suitable where documents are clean having
well-defined text-line spacing (see Figure 2-(a)) and the
latter is suitable when text-lines are not separated very
well in the documents (Figure 2-(b)), and in case of
degraded historical documents. Narrow line-separation
results in poor connected component analysis, thereby
leading to many merged ligatures. The decision to ap-
ply text-line segmentation is taken on the basis of line-
spacing in a particular document.

In the present work, ligature extraction is started by
applying connected component analysis. The list of
connected components is first divided into two parts:
base components and diacritics (including dots). This
division is based on connected component’s height,
width, and their ratio. In the presented work, font vari-
ations are not considered and primary focus is to cover
the typically used font in Urdu books and magazines.
Therefore, thresholds for separating main ligatures and
diacritics are set empirically on this font size and they
remain same for all document images in our dataset. As
mentioned earlier, its not possible to separate Urdu lig-
atures by a single threshold value. Therefore, different
thresholds have been employed as per properties of a
particular ligature. For ligature consisting of single

�
@,

the average height to width ratio is 4.0 and the average
width of this ligature is around 6 pixels. For ligatures
like H. , �

H and �
H the average height to width ratio

is 0.4 and the average width is around 30 pixels. For
all other ligatures, it is sufficient to check for a width
greater than 10 pixels. It is not possible to separate

1668



Urdu ligatures based on height to width ratio of con-
nected components.

If there are no diacritics in a ligature, e.g. ñË, then no
further processing is needed; however, if one or more
diacritics are present, e.g. �

�J
Êª
�
J�

	
�, then these diacritics

must be associated to the base component to completely
extract a ligature. Diacritics are searched in the neigh-
borhood of a base component by extending the bound-
ing box of the base connected component. This win-
dow size depends on the font size; but since we have
used only documents with the dominant font size, this
window is set according to this font size. Presently, the
bounding box of base component is extended by 15 pix-
els on top and bottom and by 10 pixels on right and left.
Extracted ligatures in this manner are then saved to a
database file for further clustering and labeling.

2.3 Clustering

As it is already mentioned that huge amount of liga-
tures in a cursive script makes the labeling of individual
ligature highly impractical. It is proposed that the ex-
tracted ligatures may be clustered according to similar
shapes. Two types of clustering methods are available
under OCRopus framework [2], namely k-means and
epsilon-net clustering. In the current work, the latter
technique is employed. Simply changing the value of
epsilon, we can control the number of clusters. The
value for epsilon was set empirically to get moderate
amount of clusters, so that it can be managed easily
at manual step of validation. Feature used for epsilon
clustering are bit maps of the ligatures. Moreover, this
method is relatively faster than the k-means.

2.4 Ligature Labeling

The next step is to verify the clustering process
and if needed, modify clusters manually. The OCRo-
pus framework provides a nice graphical user interface
(ocropus-cedit) to do this without much hassle. It is also
possible that the clustering divides a single ligature in
more than one cluster (see Figure 3-(a)), so, one needs
to merge different clusters to save time at latter stage
of labeling. Moreover, one can also modify the step of
dividing a cluster in a way to retain only valid cluster
members (same label as that of representative), assign
null class to incorrect members and then apply further
iterations of clustering on null class.

In the current work, merging of same ligature-
clusters preceded the manual labeling and only sin-
gle cluster iteration is employed. After this verifica-
tion step, each cluster is examined individually to iden-
tify invalid clusters, which are then discarded. Again

OCRopus framework can be used for this purpose (see
Figure 3-(b)).

At the end of this labeling process, we have a
database whose entries indicate the following informa-
tion about a ligature:

1. Image file name from where this ligature was orig-
inally extracted.

2. Bounding box information regarding the location
of a ligature in a document image.

3. Unicode string corresponding to the character
forming this ligature.

3 Experiments and Evaluation of Results

This section describes the experimental setup and
evaluation of results. Two prototype datasets for Urdu
script have been developed using the proposed tech-
nique. One dataset consists of clean documents such
as shown in Figure 2-(a). Presently, 20 such document
images have been used. Here, this dataset is referred to
as DB-I. The second dataset (referred to as DB-II) con-
sists of 15 documents written by a calligrapher such as
shown in Figure 2-(b). An important property of cal-
ligraphic documents is that shape of ligature does not
remain identical in the documents and there remain mi-
nor differences in the ligatures’ shapes throughout the
document. Ground-truth information about the DB-II is
available which is used to gauge the accuracy of line-
segmentation algorithm. The importance of choosing
these two datasets is to evaluate upper and lower bounds
on the performance of the proposed algorithm.

Performance evaluation metric used in present work
is ligature coverage which refers to the number of lig-
atures in the dataset that are correctly labeled by the
clustering step followed by the manual validation step.

The ligature extraction algorithm extracted 16, 857
ligatures from DB-I database. The epsilon-net based
clustering, then, clustered these ligatures into 778 clus-
ters. Each individual cluster is then examined to verify
the clustering and Unicode values are also assigned to
new clusters at this stage. Invalid ligatures are then dis-
carded. The ligature coverage achieved by this process
is 82.3%. This high ligature coverage is due to sufficient
line spacing and non-touching ligatures.

The inherent difficulty with any connected compo-
nent analysis based method is the poor accuracy in case
of overlapping lines and touching ligatures. To solve the
problem of overlapping lines in DB-II dataset, a state-
of-the-art line segmentation algorithm [3] has been em-
ployed. The segmentation accuracy of this algorithm is
over 90%. The second problem of touching ligatures
may be improved by using more sophisticated tech-

1669



Figure 3: (a) Cluster representatives. A single ligature may be clustered into many clusters. (b)Validating an individual
cluster. Invalid ligatures may be discarded by examining a single cluster (represented by “ ”).

niques. However, we are not interested in fine sepa-
ration of individual ligatures as the errors may be cor-
rected at latter manual labeling stage. Hence, we did not
tackle the problem of touching ligatures in this work.

In the first step, a total of 18, 914 ligatures were ex-
tracted. Then the clustering of these ligatures resulted
in 1, 132 clusters. After the labeling process, the to-
tal ligature coverage is around 62.7%. Inconsistency in
ligatures’ shape due to calligrapher writing resulted in
poor clustering accuracy for DB-II dataset. In this case,
simple shape-based clustering methods might not work
sufficiently and other methods need to be explored.

As mentioned already, the proposed algorithm has
been tested on a prototype database. It is planned to
develop a large-scale Urdu dataset for Urdu script us-
ing this algorithm. This ground-truth database will be
used extensively in future for benchmarking recogni-
tion algorithms for Urdu script. Moreover, the proposed
methodology may be extended to develop databases for
other cursive scripts, e.g. Telegu, Bangla, Arabic, Per-
sian, etc.

4 Conclusions

This paper presented a semi-automated technique
to generate ground-truth database for recognition pur-
poses. The basic idea of this algorithm is to cluster
similar ligatures prior to manual labeling. This method
is quite useful in generating ground-truth databases for
scripts having a lot of ligatures, e.g. Nabataean and
Indic scripts. OCRopus framework has been used for
clustering purpose. This method is tested on a prototype
dataset of Urdu script and it resulted in 82.3% coverage
for clean documents and 62.7% coverage for documents
written by a calligrapher.

References

[1] H. S. Baird. State of the art of Document Image Degrada-
tion Modeling. In DAS , pages 261–279, Rio de Janeiro,
Brazil, Dec. 2000.

[2] T. M. Breuel. The OCRopus open source OCR system.
In B. A. Yanikoglu and K. Berkner, editors, DRR XV, page
68150, San Jose, California, USA, Jan. 2008.

[3] S. S. Bukhari, F. Shafait, and T. M. Breuel. High Per-
formance Layout Analysis of Arabic and Urdu Document
Images. In ICDAR, pages 1275–1279, Bejing, China,
Sept. 2011.

[4] T. Kanungo and R. M. Haralick. An Auotmatic Closed-
loop Methodology for Generating Character Groundtruth
for Scanned Documents. IEEE Trans. on Pattern Anal.
Mach. Intell., 21(2):179–183, 1999.

[5] D.-W. Kim and T. Kanungo. Attributed Point Matching
for Automatic Groundtruth Generation. Int. Journal on
Document Analysis and Recognition, 5(1):47–66, 2002.

[6] S. Mozaffari, H. Abed, V. Märgner, K. Faez, and A. Amir-
shahi. IfN/Farsi-Database: A Database of Farsi Handwrit-
ten City Names. In ICFHR, pages 397–402, Montreal,
Canada, Aug. 2008.

[7] M. Pechwitz, S. S. Maddouri, V. Märgner, N. Ellouze,
and H. Amiri. IFN/ENIT-Database of Handwritten Arabic
Words. In CIFED , pages 129–136, Hammamet, Tunis,
Oct. 2002.

[8] M. Sagheer, C. He, N. Nobile, and C. Suen. A New Large
Urdu Database for Off-Line Handwriting Recognition. In
ICIAP, pages 538–546, Vietri sul Mare, Italy, Sept. 2009.

[9] J. Sauvola and M. Pietikäinen. Adaptive Document Image
Binarization. Pattern Recognition, 33:225–236, 2000.

[10] F. Shafait, D. Keysers, and T. M. Breuel. Efficient
Implementation of Local Adaptive Thresholding Tech-
niques Using Integral Images. In B. A. Yanikoglu and
K. Berkner, editors, DRR XV, page 681510, San Jose, Cal-
ifornia, USA, Jan. 2008.

[11] F. Slimane, R. Ingold, S. Kanoun, A. M. Alimi, and
J. Hennebert. A New Arabic Printed Text Image Database
and Evaluation Protocols. In ICDAR, pages 946–950,
Washington, DC, USA, July 2009.

[12] G. Vamvakas, B. Gatos, N. Stamatopoulos, and
S. Perantonis. A Complete Optical Character Recognition
Methodology for Historical Documents. In DAS , pages
525–532, Nara, Japan, Sept. 2008.

[13] J. van Beusekom, F. Shafait, and T. M. Breuel. Auto-
mated OCR Ground Truth Generation. In DAS , pages
111–117, Nara, Japan, Sept. 2008.

1670


