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Abstract—Spectra measured at a pixel of a remote sensing
hyperspectral sensor is usually a mixture of multiple spectra (end-
members) of different materials on the ground. Hyperspectral
unmixing aims at identifying the endmembers and their propor-
tions (fractional abundances) in the mixed pixels. Hyperspectral
unmixing has recently been casted into a sparse approximation
problem and greedy sparse approximation approaches are consid-
ered desirable for solving it. However, the high correlation among
the spectra of different materials seriously affects the accuracy of
the greedy algorithms. We propose a greedy sparse approximation
algorithm, called SUnGP, for unmixing of hyperspectral data.
SUnGP shows high robustness against the correlation of the
spectra of materials. The algorithm employes a subspace pruning
strategy for the identification of the endmembers. Experiments
show that the proposed algorithm not only outperforms the state
of the art greedy algorithms, its accuracy is comparable to the
algorithms based on the convex relaxation of the problem, but
with a considerable computational advantage.

I. INTRODUCTION

Modern spaceborne and airborne hyperspectral sensors
measure the reflectance of the Earth’s surface at hundreds of
contiguous narrow bands [1], which results in hyperspectral
image cubes with two spatial and one spectral dimension (see
Fig. 1). Each pixel of a hyperspectal image is a vector that
represents a spectral signature measured by the sensor. Due to
low spatial resolution of the sensors and multiple scatterings,
the spectra at a pixel is usually a mixture of multiple pure
spectra (endmemebrs), corresponding to different materials on
the ground. Hyperspectral unmixing aims at identifying the
endmembers in a mixed pixel and computing their fractional
abundances (i.e. their proportion in the pixel) [2]. Unmxing of
the hyperspectral images is considered a major challenge in
remote sensing data analysis [3].

Recently, Linear Mixing Model (LMM) has gained con-
siderable attention for hyperspectral unmixing [2]. This model
assumes that a mixed pixel is a linear combination of its con-
stituent endmembers, weighted by their fractional abundances.
Works that employ LMM, often use the geometric properties
of hyperspectral data in unmixing. They exploit the fact that
the convex hull of the pure endmembers in the data forms a
simplex. Thus, finding the endmembers simplifies to finding
the vertices of a simplex. Classical geometric approaches
assume the presence of pure pixels for each endmember in
the image. Vertex Component Analysis [4], N-FINDER [5],
Pixel Purity Index [6] and Simplex Growing Algorithm [7]
are some of the popular examples of such approaches.

Fig. 1: Illustration of a hyperspectral image cube: The XY-
plane shows the spatial dimensions and the wavelength axis
shows the spectral dimension. Pixels are recorded as vectors
of reflectance values at different wavelengths. The cube shows
reflectance patterns at ten wavelength bands. The data is
collected by NASA’s AVIRIS [12] over the Cuprite mines, NV.

In real world data, pure pixels are not usually present for
each endmember in the image. Therefore, some approaches
focus on extracting the pure spectral signatures from the
image for hyperspectral unmixing. Minimum Volume Simplex
Analysis [8], Iterative Constrained Endmembers (ICE) [9] and
Sparsity Promoting ICE [10] are examples of such approaches.
Extraction of pure spectra from the images fails in highly
mixed scenarios. In this case, the above mentioned approaches
generate artificial endmembers that cannot be associated with
true materials [11]. For highly mixed scenarios, hyperspectral
unmixing is often formulated as a statistical inferencing prob-
lem under the Bayesian paradigm [3]. However, the statistical
inferencing process of the Bayesian approach is generally
computationally expensive.

To overcome the above issues, hyperspectral unmixing has
recently been formulated as a sparse approximation prob-
lem [13]. This approach assumes that a mixed pixel can
be approximated by a sparse linear combination of pure
spectra, already available in a dictionary. Iordache et al. [13]
have analyzed different sparse approximation algorithms for
hyperspectral unmixing, including the greedy algorithms (e.g.,
Orthogonal Matching Pursuit (OMP) [14]). Generally, the
greedy algorithms are computationally more efficient than their
convex relaxation based counterparts [16] and admit to simpler
and faster implementations [17]. However, [13] shows that in
comparison to the convex relaxation based algorithms (e.g.,
Basis Pursuit [15]), the accuracy of the greedy algorithms is
severely affected by the high correlation of the spectra.
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Shi et al. [18] argue strongly to exploit the greedy sparse
approximation technique for hyperspectral unmxing because
of its computational advantages. The authors have proposed a
greedy algorithm for hyperspectral unmixing, called Simulta-
neous Matching Pursuit (SMP). SMP mitigates the problems
caused by the high correlation of the spectra by processing the
images in terms of spatial patches. The contextual information
in a patch is exploited in identifying the endmembers. How-
ever, the image patch size becomes an important parameter
for SMP and this parameter is image dependent. Furthermore,
SMP assumes the existence of the contextual information in
the complete image, which compromises its performance in
the highly mixed scenarios, where this information is scarce.

In this work, we propose a greedy sparse approximation
algorithm for hyperspectral unmixing. The algorithm performs
Sparse Unmixing via the Greedy Pursuit strategy [14], hence
it is named SUnGP. SUnGP approximates the mixed pixel by
iteratively identifying its endmembers from a fixed dictionary.
In each iteration, it selects a subspace that is further pruned
to identify the endmember. The pruning strategy helps SUnGP
in mitigating the adverse effects of the high correlation of the
spectra. SUnGP is a pixel-based greedy algorithm, therefore its
performance does not degrade in the highly mixed scenarios.
Additionally, SUnGP can be modified to take advantage of the
contextual information in the image, following the guidelines
in [19]. Experiments with synthetic and real world hyper-
spectral data show that the proposed algorithm outperforms
the existing state of the art greedy algorithms. Moreover, its
results are comparable to the convex relaxation based sparse
approximation algorithms, with a considerable computational
advantage. In this work, we preprocess the hyperspectral data
using spectral derivatives [29]. This results in better perfor-
mance of greedy pursuit algorithms in hyperspectral unmixing.

II. HYPERSPECTRAL UNMIXING AS A SPARSE

APPROXIMATION PROBLEM

A. Linear Mixing Model

Sparse approximation can exploit the Linear Mixing Model
(LMM) of the pixels in hyperspectral unmxing. This model
assumes that the reflectance yi, measured at the ith band of
a mixed pixel, is a linear combination of the endmember
reflectances at that band. Mathematically,

yi =
p∑

j=1

lijαj + εi (1)

where, p is the total number of the endmembers in the pixel,
lij is the reflectance of the jth endmember at band i, αj is the
fractional abundance of the jth endmember and εi represents
the noise. If the image is acquired by a sensor with m spectral
channels, we can write the LMM in the matrix form:

y = Lα + ε (2)

where, y ∈ R
m represents the reflectance vector of the pixel,

L ∈ R
m×p is a matrix with p endmembers, α ∈ R

p contains
the corresponding fractional abundances of the endmembers
and ε ∈ R

m represents the noise. The fractional abundances
follow two constraints in LMM [3]. (1) ANC: Abundance Non-
negativity Constraint (∀i, i ∈ {1, ..., p}, αi > 0) and (2) ASC:
Abundance Sum-to-one Constraint (

∑p
i=1 αi = 1).

B. Sparse approximation of a mixed pixel

Let D ∈ R
m×k (k > m) be a matrix with each column

di ∈ R
m representing the spectral signature of a material.

According to LMM, if D contains a large collection of spectra,
including the endmembers of the mixed pixel, then:

y ≈ Dα (3)

where, α ∈ R
k has only p non-zero coefficients. Generally, in

the remote sensing hyperspectral images, a pixel is a mixture
of four to five spectra [13]. Therefore, it is safe to assume
that α is sparse (p � k). This fact allows us to formulate
hyperspectral unmixing as the following sparse approximation
problem:

(P η
0 ) : min

α
||α||0 s.t. ||Dα− y||2 ≤ η (4)

where, ||.||0 is the l0 pseudo-norm that simply counts the
number of non-zero elements in α, and η is the tolerance due
to noise. In the sparse approximation literature, D is known
as the dictionary and its columns are called the atoms.

Minimization of l0 pseudo-norm in (P η
0 ) is, in general,

an NP-hard problem [20]. In practice, its polynomial time
approximation is achieved with the greedy algorithms. Relaxed
convexification of the problem (P η

0 ) is also possible. It is done
by replacing l0 pseudo-norm in (4) with the l1 norm of α.
Let us denote this version of the problem as (P η

1 ). Solving
(P η

1 ) is equivalent to solving the well known LASSO problem
[21] with an appropriate Langrangian multiplier λ [22]. The
LASSO formulation of the problem is given below as (Pλ

1 ):

(Pλ
1 ) : min

α

1
2
||y −Dα||2 + λ||α||1 (5)

Previous works in sparse unmixing mainly focus on solv-
ing (P η

1 ) and (Pλ
1 ) [18]. For instance, Sparse Unmixing by

Splitting and Augmented Langrangian (SUnSAL) [22] solves
(Pλ

1 ) for sparse unmixing. The authors have also enhanced
this algorithm to its constrained version, called CSUnSAL.
CSUnSAL solves (P η

1 ) with ASC as an additional constraint.
Iordache et al. [13] have also used SUnSAL+ and CSUnSAL+
for sparse unmixing. These algorithms solve the corresponding
problems by further imposing ANC on the solution space.

III. GREEDY SPARSE APPROXIMATION

Greedy algorithms approximate the signal y in (P η
0 ) by

iteratively selecting the atoms of the dictionary. These atoms
are selected such that the signal is approximated in minimum
number of iterations. This greedy heuristic finally results in a
sparse solution. We can unify the greedy sparse approximation
algorithms under a base-line algorithm, which can be stated as
the following sequential steps: 1) Identification of the atom(s)
of D, best correlated to the residual vector of the current
approximation of y. For initialization, y itself becomes the
residual vector. 2) Augmentation of a selected subspace with
the identified atom(s). The selected subspace is empty in the
first iteration. 3) Residual update, after approximating y with
the selected subspace. The above steps are repeated until some
stopping rule is satisfied by the algorithm. Recently proposed
greedy algorithms vary in different steps of the base-line
algorithms.
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OMP [14] follows the base-line algorithm very closely.
After identifying a single atom and augmenting the selected
subspace with it, OMP finds the least squares approximation of
y with the selected subspace. This approximation is subtracted
from y in the residual update step. This makes the residual
vector orthogonal to the selected subspace. This notion is an
enhancement over the Matching Pursuit (MP) algorithm [23],
that updates the residual vector by deflating it with the last
atom added to the selected subspace. A non-negative variant of
OMP, henceforth denoted as OMP+, has also been proposed in
[16]. OMP+ restricts its solution space only to the vectors with
non-negative coefficients. Generalized-OMP (gOMP) [24] is a
generalization of OMP. It identifies a fixed number of atoms
in each iteration and augments the selected subspace with all
of them. Then it updates the residue like OMP.

Subspace Pursuit (SP) [27], Compressive Sampling MP
(CoSaMP) [25] and Regularized-OMP (ROMP) [26] are the
algorithms that assume prior knowledge of the cardinality
p of the signal y. These algorithms identify a subspace of
atoms in the step (1). In each iteration, SP identifies p atoms
and augments the selected subspace with all of them. From
this subspace it again selects p atoms that have maximal
contribution to the approximation of y in the least squares
sense. SP updates the residue like OMP. CoSaMP identifies
2p atoms in each iteration and augments the selected subspace
with them. Then, it selects p atoms like SP. However, it
updates the residue by using the already computed coefficients
of the selected p atoms. ROMP also identifies p atoms in
each iteration. Then it drops off some of these atoms using
a predefined regularization rule before the step (2). In ROMP,
the residual vector is also updated following OMP.

IV. PROPOSED ALGORITHM

Hyperspectral data has its own characteristics, such as,
the cardinality of a mixed pixel in an image is usually small
(four to five) but unknown, the spectra of different materials
(i.e. the atoms of the library) are highly correlated and the
fractional abundances are non-negative quantities. The greedy
sparse approximation algorithms reviewed in Section 3 were
not originally proposed for hyperspectral unmixng, therefore
they do not explicitly take care of the above mentioned
characteristics of the hyperspectral data. In fact, to the best of
our knowledge, no pixel-based greedy sparse approximation
algorithm has ever been proposed specifically for the problem
of sparse unmixing of hyperspectral data.

Here, we present Sparse Unmixing via Greedy Pursuit
(SUnGP), a pixel-based greedy algorithm that has been de-
signed particularly for the problem of hyperspectral unmixing.
SUnGP is shown in Algorithm 1. Each iteration of the al-
gorithm comprises the three steps of the base-line algorithm
in Section 3. In the identification step, SUnGP first computes
the correlations between the atoms of the dictionary and the
residual vector of the current approximation of y, where y
itself is considered as the residual vector at initialization. Then,
SUnGP identifies the atoms of the dictionary corresponding to
the L (an algorithm parameter) largest values of the computed
correlations. These atoms are used for temporarily augmenting
the selected subspace. Using this subspace, a non-negative least
squares approximation of the mixed signal is computed (line
‘8’ in Algorithm 1). SUnGP then identifies the atom from the

aforementioned L atoms that has the maximum contribution
in this approximation. This atom is used for permanently
augmenting the selected subspace (line ‘10’).

Notice that, SUnGP first identifies a subspace of L atoms
(which are highly correlated) and later prunes it keeping in
view the non-negativity of the solution space, to identify the
single best atom. Once the best atom is identified, it is added
to the selected subspace, never to be dropped off in the future
iterations. This strategy stems directly from the aforementioned
characteristics of the hyperspectral data. SUnGP follows OMP
in the residual update step and uses a disjunction of three
stopping rules (line ‘13’). The rules (a) and (b) are self
explanatory. The rule (c) ensures that the algorithm stops if
it is not able to reduce the l2 norm of the residual vector at
least by a fraction β in its last iteration. The rules (b) and (c)
allow SUnGP to operate without prior information about the
cardinality of the mixed pixel.

Algorithm 1 SUnGP

Initializaiton:
1: Iteration: i = 0
2: Initial solution: α0 = 0
3: Initial residual: r0 = y −Dα0 = y
4: Selected support: S0 = support{α0} = ∅

Main Iteration: Update iteration: i = i + 1
Identification:

5: Compute pj = dT
j ri−1

||dj ||22
, ∀j ∈ {1, ..., k}.

6: N = {indices of the atoms of D corresponding to the
L largest pj}

7: St = Si−1 ∪N
8: αt = min

α
||Dα− y||22 s.t. support{α} = St, α ≥ 0

9: j∗ = index j of the largest coefficient of αt, s.t. j ∈ N
Augmentation:

10: Si = Si−1 ∪ {j∗}
Residual update:

11: Compute αi = min
α
||Dα−y||22 s.t. support{αi} = Si

12: ri = y −Dαi

Stopping rule:
13: If a) i > desired iterations, or b) ||ri||2 < ε0,

or c) ||ri||2 > β||ri−1||2 stop, otherwise iterate again.

V. PROCESSING THE DATA FOR GREEDY ALGORITHMS

In the sparse approximation literature, the correlation
among the atoms of the dictionary is usually quantified by
the mutual coherence μ ∈ [0, 1] of the dictionary.

μ = max
i,j;j �=i

abs(dT
i dj)

||di||2||dj ||2 (6)

where dz is the zth atom of the dictionary. In general, the
greedy sparse approximation algorithms are able to identify
the support of the solution more accurately, if μ is small for
the dictionary. For instance, according to [17], if μ < 0.33
OMP will always find the exact support for a signal that is
a linear combination of two distinct atoms of the dictionary.
However, in the sparse unmixing problem, usually μ ≈ 1 [13].
Researchers at the German Aerospace Center [29] have shown
that for a dictionary of spectra sampled at a constant wave-
length interval, μ can be reduced by taking the derivatives of
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the spectra. The derivative of a spectra d ∈ R
m is defined as

Δ(d) =
d(bi)− d(bj)

bj − bi
, ∀i i ∈ {1, ...,m− c} (7)

where, bz is the wavelength at the zth band, d(bz) is the
reflectance value at that wavelength and j = i + c, with i, j
and c being positive integers.

Keeping in view its coherence reduction ability, we benefit
from the derivative operation in hyperspectral unmixing with
the greedy algorithms. We propose to use the following strat-
egy for processing the hyperspectral data for the greedy sparse
approximation algorithms:

1) Create the dictionary DΔ and the pixel yΔ by taking
the derivative of each spectra in D and the pixel y,
respectively.

2) Compute α with the greedy sparse approximation
algorithm using DΔ and yΔ.

3) Estimate the fractional abundance vector α̃, by the
non-negative least squares approximation of y using
the atoms of D corresponding to the support of α.

The unmixing performed on the differentiated data in
step (2) is used to identify the correct support of the solution.
Once the support is found, it is used for the actual estimation of
the fractional abundances using the original data in the step (3).
In the above strategy, we use the dictionaries after normalizing
their atoms in l1 norm. By doing so, the estimated fractional
abundances automatically satisfy ASC. It is worth mentioning
here that the derivative operation helps in coherence reduction,
however the correlation among the spectra of the differentiated
data still remains high enough to cause problems for the greedy
sparse approximation algorithms. Therefore, the algorithms
need to show robustness against the correlation of the spectra
for effective hyperspectral unmixing.

VI. EXPERIMENTS

In this section, we present the results of the experiments
performed with synthetic data and the real-world data. The
experiments with the synthetic data are important because they
provide quantitative evaluation of the approach, which is not
possible with the real-world data. In all the experiments we
used a fixed dictionary, which was created from the NASA
Jet Propulsion Laboratory’s Advanced Space-borne Thermal
Emission and Reflectance Radiometer (ASTER) spectral li-
brary (http://speclib.jpl.nasa.gov). This library contains pure
spectra of 2400 materials. To perform the experiments, we
selected 425 of these spectra and resampled them in the wave-
length range 0.4 to 2.5μm, at a constant interval of 10nm. The
resampling is performed to match the sampling strategy of the
NASA’s Airborne Visible and Infrared Imaging Spectrometer
(AVIRIS) [12]. We dropped 24 bands of the spectra in the
dictionary because of zero or very low reflectance values. This
made D a 200 × 425 matrix. The spectra were selected such
that μ = 0.9986 for the dictionary. We kept μ < 1 in order to
ensure that the spectra in the dictionary are unique.

A. Results on synthetic data

We simulated the synthetic hyperspecral data with 500
mixed pixels, where each pixel was a linear combination

of p randomly selected spectra from the dictionary. Follow-
ing the experimental protocol in [13], we drew the frac-
tional abundances of the endmembers in each pixel from
a Dirichlet distribution. Therefore, the fractional abundances
satisfy ASC. We added the Gaussian white noise to the
data such that the pixels had SNR = 50dB. The algorithms
were evaluated for the two goals of hyperspectral unmixing,
namely, the endmembers identification and the estimation
of the fractional abundances. For the former, we used the
evaluation metric of unmixing fidelity Φ(α) → [0, 1]. If
P = {x | x is the index of an endmember in D} and A =
{a | a is a non-zero elements in α}, then:

Φ(α) =
|P⋂A|
|A| (8)

where |.| denotes the cardinality of the set. Fig. 2a shows
the results of the experiments performed to evaluate the
endmember identification ability of the greedy algorithms.
The values in these results, and the results to follow, are
the mean values of the metrics, computed over the whole
synthetic data. The results show that SUnGP performs better
than the existing greedy sparse approximation algorithms.
For SUnGP we used L = 50, which was optimized on a
separate training data set. Different parameters of the other
algorithms were also optimized on the same training data set.
We have given the correct value of p to the greedy algorithms
as their input parameters. gOMP is tuned to select 2 atoms
in its each iteration. The figure shows some of the results
in dotted plots. The algorithms corresponding to these plots
assume a priori knowledge of p. Therefore, they are not of
practical use in hyperspectral unmixing. However, we have
included them in the analysis for a comprehensive comparison
of SUnGP’s performance with the state of the art greedy
algorithms. Fig. 2b compares the algorithms for the different
noise levels of data. SUnGP again shows good performance,
especially at high SNR1.

In our experiments, we have processed the data according
to the strategy discussed in Section 5. The unmixing fidelity
of the solution can be computed at the step (2) of the strategy.
Therefore, the results discussed above were computed at that
step. Following [28], we chose c = 2 in Equation (7) for
the derivative operation. To evaluate the estimation of the
fractional abundances we also performed the step (3) of the
strategy and compared the results of SUnGP with the results
of the popular convex relaxation based algorithms that have
been proposed specifically for hyperspectral unmixing. For
this comparison, we did not assume a priori knowledge of
p and used the stopping rule (c) (line ‘13’, Algorithm 1) with
β = 0.9 for SUnGP. The value of β was optimized on a
separate training data set. For the convex relaxation based
algorithms we chose λ = 10−3. This value was also optimized
on the training data. We used the Euclidean distance between
the estimated fractional abundance vector α̃ and the actual
fractional abundance vector α0, as the evaluation metric. The
comparison of the results is given in Fig. 2c, which shows that
SUnGP’s performance is comparable to the convex relaxation
based algorithms. We do not present the results of fractional
abundance estimation by the other greedy algorithms because

1SNR as high as 400dB is a realistic value for hyperspectral remote sensing
instruments [29]. Our analysis focuses only on the more challenging case of
low SNR.
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of space limitations. However, it is easy to see that better Φ
will lead SUnGP to outperform the other greedy algorithms in
fractional abundance estimation.

A major advantage of using the greedy algorithms in
hypespectral unmixing is the computational efficiency. Table 1
compares the computational timings of the algorithms. These
timings have been computed for unmixing of a 500 pixel
synthetic image, with p = 5 for each pixel and SNR = 50dB.
Greedy algorithms, other than SUnGP, assume prior knowledge
of p. The algorithms use the same parameter settings which
are used in the results discussed above. Timings have been
computed with authors’ MATLAB implementations for each
of the algorithms.

B. Results on the real-world data

We also performed sparse unmixing of the real-world hy-
perspectral data (http://aviris.jpl.nasa.gov/data/free data.html),
acquired by AVIRIS. From this data, we selected an im-
age cube of dimensions 350 × 350 × 224. The spatial di-
mensions (350 × 350) of this cube represent a region of
Cuprite mines, Nevada. The Cuprite mining district has
been studied well for its surface materials in the Geo-
logical Sciences literature. The USGS classification map
in Fig. 3 shows the labels of the different materials in
the region, as computed by the Tricorder software pack-
age (http://speclab.cr.usgs.gov/PAPERS/tetracorder/). For the
region analyzed in this work, we separately show the classifi-
cation map of Alunite (a mineral) computed by Tricorder. The
figure also shows the fractional abundance maps of Alunite
as computed by the different sparse approximation algorithms
(only the best ones are shown because of the space limitations).
From the figure, it is visible that SUnGP has estimated high
fractional abundances for the pixels which have been classified
as Alunite by Tricorder. The values are higher than those
computed by any other algorithm.

Following [13] and [18], we have provided the results only
for the visual comparison. The quantitative comparison of the
results on the real-world data is not possible, as no ground
truth values of the fractional abundances are available for the
real-world data [18]. In the results shown, we have used 188
spectral bands (out of 224) of the image cube. The other
bands were dropped because of zero or very low reflectance
values. The corresponding bands were also dropped from the
dictionary. We used the strategy discussed in Section 5 for the
greedy algorithms. For CoSaMP we set p = 5. Rest of the
algorithms use the same parameter settings as discussed in the
previous section.

VII. CONCLUSION

We have proposed a pixel based greedy sparse approxi-
mation algorithm, called SUnGP, for hyperspectral unmixing.
The proposed algorithm identifies different spectra in a mixed
hyperspectral pixel by iteratively selecting a subspace of
spectra from a fixed dictionary and pruning it. SUnGP has
been tested on synthetic as well as the real-world remote
sensing hyperspectral data. The algorithm has been shown to
outperform the existing state of the art greedy sparse approxi-
mation algorithms. Furthermore, its results are comparable to
the convex relaxation based sparse approximation algorithms,
with a considerable computational advantage.
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