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Abstract

Hyperspectral images obtained from remote sensing
platforms have limited spatial resolution. Thus, each spec-
tra measured at a pixel is usually a mixture of many pure
spectral signatures (endmembers) corresponding to differ-
ent materials on the ground. Hyperspectral unmixing aims
at separating these mixed spectra into its constituent end-
members. We formulate hyperspectral unmixing as a con-
strained sparse coding (CSC) problem where unmixing is
performed with the help of a library of pure spectral sig-
natures under positivity and summation constraints. We
propose two different methods that perform CSC repeat-
edly over the hyperspectral data. However, the first method,
Repeated-CSC (RCSC), systematically neglects a few spec-
tral bands of the data each time it performs the sparse
coding. Whereas the second method, Repeated Spectral
Derivative (RSD), takes the spectral derivative of the data
before the sparse coding stage. The spectral derivative is
taken such that it is not operated on a few selected bands.
Experiments on simulated and real hyperspectral data and
comparison with existing state of the art show that the pro-
posed methods achieve significantly higher accuracy. Our
results demonstrate the overall robustness of RCSC to noise
and better performance of RSD at high signal to noise ratio.

1. Introduction

Modern remote sensing instruments such as the
NASA’s Airborne Visible Infrared Imaging Spectrometer
(AVIRIS) [10] take hyperspectral (HS) images of Earth for
geological studies. These images can be represented as
HS cubes with two spatial and one spectral dimension (see
Fig. 1). In typical remote sensing HS images, the spectral
dimension consists of hundreds of contiguous bands in the
visible and short infrared wavelength range. However, each
pixel of the image cube represents a large area of the Earth’s
surface in the spatial dimensions [4]. For instance, in the

Figure 1: Illustration of hyperspectral image cube. The
cube shows only eleven spectral bands (out of 224 bands)
captured by AVIRIS. The image is taken over Cuprite
mines, Nevada.

images captured by EnMAP HS imager of Germany [1] and
Hyperion of NASA [17], each pixel represents about 30m2

area on the ground. Due to the low spatial resolution of
HS sensors, the spectra measured by a sensor pixel is usu-
ally a mixture of spectra of different pure materials on the
ground. Each spectra of pure material is called an endmem-
ber. Hyperspectral unmixing is the process of separating
the measured spectra into its constituent endmembers and a
set of fractional abundances of the corresponding materials
(i.e. the proportion of each material in the image pixel), one
set per pixel [5].

Hyperspectral unmixing is an active research area in re-
mote sensing community [3], where it is seen as a blind
source separation problem with the sources being statisti-
cally dependent [14]. Many works in hyperspectral unmix-
ing exploit geometrical properties of the data in observed
mixed pixels. These approaches are mainly based on the
premise that in each mixed pixel the fractional abundances
form a probability simplex and among a given collection of
material spectra the constituent pixel endmembers can be
found by estimating the smallest simplex set containing the
observed pixel spectra [21], [20]. These methods assume
presence of at least one pure pixel for every material cap-
tured in the image, thus requiring endmember extraction al-
gorithms [14]. Vertex component analysis [18], N-FINDER
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[24], orthogonal subspace projection technique [22] and
Pixel Purity Index [6] are some of the popular techniques
and algorithms for endmember extraction for hyperspectral
unmixing. The assumption of the existence of pure pixels
in remote sensing HS cubes is not a practical one, therefore
techniques like iterative error analysis [19], convex cone
analysis [11], minimum volume simplex analysis [15] and
minimum volume constrained non-negative matrix factor-
ization [16] have been proposed to circumvent the problem
by generating pure endmembers from hyperspectral images.
However, these techniques are likely to fail in highly mixed
scenarios, where the algorithms end up generating artificial
endmembers that cannot be associated with spectral signa-
tures of true materials [12].

To overcome the aforementioned issues, hyperspec-
tral unmixing has recently been approached in a semi-
supervised fashion [4], [3], [14], [13]. Under the assump-
tion that an observed mixed pixel spectra can be represented
as a linear combination of finite number of pure spectra of
known materials, these approaches formulate hyperspectral
unmixing as a sparse regression problem. They make use
of spectral libraries of pure material made publicly avail-
able by US Geological Survey (USGS) [8] and Jet Propul-
sion Lab, NASA [2]. One major challenge faced by sparse
regression approaches is the fact that the spectral libraries
have very high mutual coherence between their elements
[4], [3], [14]. Due to the large number of similar library
elements (i.e. elements with high mutual coherence), a
given mixed spectra can be represented with multiple dif-
ferent combinations of the library elements. Thus, detect-
ing the correct linear combination of the endmembers, out
of all possible linear combinations of the library elements,
becomes a challenging problem. Researchers at German
Aerospace Center (DLR) [4], [3] have recently proposed to
increase the endmember detection rate by taking spectral
derivatives of the library elements and the given HS image.
Spectral derivative significantly reduces the mutual coher-
ence of the library elements. This approach is able to in-
crease the endmember detection rate but at the same time it
is very sensitive to noise and works well only for HS images
with very high Signal to Noise Ratio (SNR).

In this work we formulate hyperspectral unmixing as a
constrained sparse coding problem and propose two differ-
ent methods to improve the endmember detection rate. One
of these methods shows better overall robustness to noise,
whereas the other performs better at high SNR. In the first
method, we propose to perform sparse coding of the HS
cube repeatedly such that in each sparse coding step (ex-
cept the first) few spectral bands in the library and the im-
age are systematically neglected. Fractional abundances of
the detected endmembers in each step are then combined in
a weighted fashion. In the second method, sparse coding is
again performed repeatedly. However, this time the coding

is performed on the library and the image that is obtained
by taking their spectral derivatives. The spectral derivatives
are taken such that they are not operated on a few selected
bands of the data. We perform experiments with the pro-
posed methods on simulated data and real HS cube obtained
by AVIRIS. We compare our results with the state of the art
results shown by researchers at DLR in order to evaluate
our methods. Experiments show improvements in the re-
sults with the proposed methods, especially for low SNR of
HS images.

This paper is organized as following: after formulating
the problem in Section 2, we present the proposed methods
in Section 3. Results of the experiments with the proposed
methods and discussion on these results are given in Sec-
tion 4. Section 5 concludes this work by summarizing the
findings.

2. Problem Formulation

2.1. Linear Mixing Model

In this work, we focus on Linear Mixing Model
(LMM) [5] for hyperspectral unmixing. This model as-
sumes that at any given band in an HS cube, the spectral
response of a pixel is a linear combination of all the con-
stituent endmembers at that particular band. Written math-
ematically,

yi =
p∑
j=1

lijαj + εi (1)

where yi is the value of spectral reflectance measured at ith

spectral band, lij is the reflectance of the jth endmember of
the pixel at band i, αj is the fractional abundance of the jth

endmember and εi is the noise affecting the measurement.
Assuming that HS image is acquired by a sensor with m
spectral channels, LMM can be written in a matrix form:

y =Lα + ε (2)

where y ∈ Rm×1 represents the measured reflectance at
a pixel, L ∈ Rm×p is a matrix with p pure endmembers,
α ∈ Rp×1 is a vector with fractional abundances of the end-
members as its elements and ε ∈ Rm×1 represents noise.

In a linear mixing model, fractional abundances of the
constituent endmembers are subject to two constraints [5],
(a) Abundance Non-negativity Constraint (ANC) (∀i, i ∈
{1, ..., p}, αi ≥ 0) and (b) Abundance Sum-to-one Con-
straint (ASC) (

∑p
i=1 αi = 1). These constraints owe to the

fact that fractional abundances of the endmembers are non-
negative quantities which, if detected exactly, sum up to 1
for the area represented by a pixel.
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2.2. Hyperspectral Unmixing as Sparse Approxi-
mation

Let us denote a spectral library of materials by a matrix
D ∈ Rm×k (k > m) with each column di ∈ Rm×1 rep-
resenting spectra of a pure material that is normalized to l2
unit length. If we neglect noise, under LMM the spectral
measurement y at any pixel of an HS image can be recon-
structed with the spectral library:

y = Dα (3)

In practice, a given pixel (30m2 ground area) contains only
a limited number of materials. It would be safe to assume
that a given sensed spectra will be a linear combination of
no more than p pure spectra, where p � k. Note that, in
the literature related to sparse representation of images, D
is referred as dictionary and di is termed as its atom. How-
ever, here we stick to the more common naming convention
of remote sensing community and refer to D as a library
and di as a pure spectral signature or an endmember.

With k > m, (3) represents an underdetermined sys-
tem of equations that can have an infinite number of so-
lutions. Therefore, instead of solving (3) we can mini-
mize ||Dα − y||2, where ||.||2 is the l2 Euclidean norm.
Thus, we arrive at the following sparse approximation prob-
lem for hyperspectral unmixing:

min ||α||0 s.t.||Dα− y||2 ≤ η (4)

where η is some tolerance. Solving the above mentioned
equation is NP-hard. However, its polynomial time approx-
imation can be achieved by replacing l0 minimizer with l1
minimizer [7]. The sparse approximation problem can thus
be re-written as:

min ||α||1 s.t.||Dα− y||2 ≤ η (5)

By including the Abundance Non-negativity Constraint in
the above equation we arrive at the following constraint op-
timization problem:

min ||α||1 s.t.||Dα− y||2 ≤ η ∀i, αi ≥ 0 (6)

Equation 6 can be solved using basis pursuit (BP) al-
gorithm [7] or LASSO (least absolute shrinkage and selec-
tion operator) [23], with positivity constraint on the sparse
vector coefficients. Previous works in hyperspectral unmix-
ing (e.g. [3], [4]) formulate the problem as in Equation 6
and manually tune the value of η to find the approximation
which gives the best results. It is also possible to achieve
the same results by solving the following constrained sparse
coding problem instead of (6):

min
α
||Dα− y||2 s.t.||α||1 ≤ λ, ∀i, αi ≥ 0 (7)

The main advantage of formulating the hyperspectral un-
mixing problem as (7) is that we can use Abundance Sum-
to-one Constraint to guess the value of λ a priori.

(a) (b)

Figure 2: (a) Coherence matrix of the original library, with
columns selected such that no two of them are more than
25 deg apart. (b) Coherence matrix of the differentiated li-
brary, with c = 2 in (9).

2.3. Mutual Coherence

Mutual coherence of a library, µ(D), is defined as:

µ(D) = max
i6=j
|dTi .dj | (8)

In sparse approximation techniques, small mutual coher-
ence of the library is one of the most desirable condi-
tions [3]. This is because, similar spectral signatures in the
library can result in false detections of library elements in
the sparse approximation process. However, in the case of
large overcomplete libraries of material spectral signatures,
high mutual coherence is unavoidable.

Iordache et. al. [14] show that for the value of ‘p’ to be
as high as 10, considerable improvements can be achieved
in sparse unmixing if the library is restricted to have spectral
signatures that are different by 3 deg (i.e. µ(D) ≤ 0.9986).
Bieniarz et al. [3] have proposed an approach that sig-
nificantly reduces µ(D) by taking the spectral derivative
of the library. Spectral derivative of a spectral signature
d ∈ Rm×1, is defined as:

∆(d) =
d(bi)− d(bj)
bj − bi

,∀i i ∈ {1, ...,m− c} (9)

where, bk is the wavelength at kth band, d(bk) is the re-
flectance of the material at that wavelength and j = i + c,
where c = 1. Fig. 2 shows an example of coherence re-
duction of a library using the spectral derivative. The image
on the left shows the coherence matrix (DTD) of a library
with µ(D) = 0.9. Coherence matrix of the differentiated
library is represented by the image on the right.

It should be noticed that the operation of spectral deriva-
tive is very sensitive to noise. This is because, with a high
spectral resolution of a hyperspectral sensor and c = 1
in (9), the value of spectral derivative at a band can change
drastically with a small change in the reflectance value (due
to noise) at that band or its adjacent band. Without greatly
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Figure 3: Coherence reduction by band removal: (Left) Spectral signatures of two materials from the USGS Library that
are 8 deg apart. (Center) Peaks (in black) indicate the spectral bands at which the variance between the reflectances is very
low. (Right) Spectral signatures after removal of 25 bands with lowest variance. The signatures are 9.3 deg apart after band
removal.

Figure 4: Illustration of computing ‘n’ sparse coefficient matrices with RCSC with a single library. The library is first
clustered into ‘n’ clusters. Each cluster is then used to create a library D̃i by removing the bands which have least variance
in the cluster. With each library, a different sparse coefficient matrix Ai is computed.

affecting the spectral derivative’s ability of coherence re-
duction, we lower this sensitivity by using c = 2 in (9),
which results in smoother differentiated spectra.

3. Proposed Solution

We propose two different algorithms for hyperspectral
unmixing with constrained sparse coding. These algorithms
are based on the following important observations. 1) For
highly coherent spectral signatures, it is possible to reduce
their mutual coherence by removing the bands from their
spectra at which variance between the material reflectances
is very low (see Fig. 3). 2) For spectral derivatives, adverse
effects of noise on sparse unmixing can be mitigated by tak-
ing the spectral derivative such that it is not operated on the
bands at which the material reflectances have very low vari-
ance across the spectral library. This happens because, at
and near those bands, the highly coherent spectral signa-
tures of materials are generally very similar to each other
because of their inherent smooth nature [25]. Therefore, for
noisy signals it is the noise that mainly contributes to the
significant differences between the differentiated signals at
those bands. Since, such differences can cause confusion in
the unmixing process, we can simply neglect the aforemen-
tioned bands while taking the spectral derivative.

1. Algorithm RCSC: Inputs D,Y returns A
2. Sparse code: Compute A0 with D and Y, using (7).
3. Cluster: Cluster the columns of D into n clusters Ci,

s.t. µ (Ci) ≥ cos θ, ∀Ci
, i∈ {1, ..., n}

4. for each Ci

5. Compute variance: Compute variance of each row of Ci

6. Select rows: Select ‘f ’ fraction of rows with minimum variances.
7. Remove bands: Create D̃i and Ỹi by removing the rows corres-

ponding to ‘f ’ from D and Y.
8. Sparse code: Compute Ai with D̃i and Ỹi using (7).
9. A = 1

2−f

Pn
i=0 βiAi

10. return A

Figure 5: Algorithm 1: Repeated-CSC (RCSC).

3.1. Repeated Constrained Sparse Coding (RCSC)

This method formulates hyperspectral unmixing as a
constrained sparse coding problem and repeatedly solves
the optimization function in Equation 7. The method is
presented in Fig. 5 as an algorithm. RCSC first computes
a sparse coefficient matrix A0 with the help of the given
library D and the HS image Y (Fig. 5, line ‘2’ ). Later
on, it computes ‘n’ different sparse coefficient matrices Ai,
where i ∈ {1, ..., n}, such that an Ai is computed with a
library D̃i and an image Ỹi that are obtained by neglect-
ing ‘f ’ fraction of bands from D and Y, respectively. The
algorithm uses all the intermediate sparse coefficient matri-
ces to compute the final sparse coefficient matrix A, whoes
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columns represent the fractional abundances of the detected
materials in the pixels of the HS image. Given a library D
and the image Y, the bands that are neglected in computing
an Ai are selected as follows. The algorithm first clusters
the spectral signatures in D (Fig. 5, line ’3’). Each cluster
Ci (i ∈ {1, ..., n}) is created as an m × c matrix such that,
c > 2 and µ(Ci) ≥ cos θ, where θ denotes the threshold
angle (i.e. the maximum angle allowed between any two
spectral signatures in Ci). For each Ci, the algorithm se-
lects ‘f ’ fraction of its rows with minimum variances. The
rows corresponding to ‘f ’ are removed from D and Y to
obtain D̃i and Ỹi (Fig. 5, line ‘7’ ). Since the rows of
these matrices correspond to spectral bands, removing them
simply means neglecting the corresponding spectral bands
in the HS data. The algorithm computes a sparse coeffi-
cient matrix Ai with the corresponding D̃i and Ỹi for each
Ci (Fig. 5, line ‘8’ ). It should be noticed that we use D
and Y to compute A0, but reduced matrices D̃is and Ỹis
to compute all other Ais. This implies that all the learned
sparse coefficient matrices may be different, however they
have the same dimensions. After exhausting the list of the
clusters, RCSC directly combines all the sparse coefficient
matrices in a weighted fashion for calculating the final frac-
tional abundance matrix A (Fig. 5, line ‘9’ ), where:

βi =
{

1 i = 0
(1− f)/n i 6= 0

There are two main advantages of solving (7) in a re-
peated manner as described above. 1) Each time when
we drop spectral bands of the library, mutual coherence of
highly similar spectral signatures belonging to the cluster
under consideration, reduces. This improves Ai if any of
the constituent endmemebers of the mixed pixels belongs
to the cluster under consideration. 2) Even if none of the
constituent endmemebers belong to the current cluster, each
time the sparse coding step converges to a slightly differ-
ent sparse coefficient matrix. With our settings, each one
of these matrices by itself achieves a reasonable endmem-
ber detection rate1. Therefore, combining all the computed
sparse coefficient matrices results in even better endmember
detection.

3.2. Repeated Spectral Derivative (RSD)

This method uses the concept of spectral derivative (see
section 2.3) and solves Equation 7 with an image Ŷi and
a library D̂i to obtain a sparse coefficient matrix Ai. This
is repeated ‘n’ times, such that each time Ŷi and D̂i repre-
sent different matrices which are obtained by taking spectral
derivatives of Y and D. Each time the spectral derivative
is taken such that it is operated on all the spectral bands

1We make this observation based on the results of our further experi-
ments not reported here.

1. Algorithm RSD: Inputs D,Y returns A
2. Cluster: Cluster the columns of D into n clusters Ci,

s.t. µ (Ci) ≥ cos θ, ∀Ci
, i∈ {1, ..., n}

3. for each Ci

4. Compute variance: Compute variance of each row of Ci

5. Select rows: Select ‘f ’ fraction of rows with minimum variances.
6. Differentiate: Create D̂i = ∆(D) and Ŷi = ∆(Y) such that

spectral derivative is not operated on bands corresponding to ’f ’.
7. Sparse code: Compute Ai with D̂i and Ŷi using (7).
8. A = 1

n

Pn
i=1 Ai.

9. return A

Figure 6: Algorithm 2: Repeated-Spectral Deriva-
tive (RSD).

in Y and D except at a small fraction ‘f ’ of them. As in
RCSC, the value of ‘n’ and the bands that correspond to ‘f ’
are found by clustering D into ‘n’ clusters stored in matri-
ces Ci (i ∈ {1, ..., n}). Once again, the bands that belong
to ‘f ’ are those which correspond to the rows of Ci that
have least variances. In Ŷi and D̂i, the rows representing
these bands are kept the same as those in Y and D. Since
‘f ’ represents a small fraction, it is also possible to sim-
ply drop these bands from the differentiated data and still
achieve similar results. However, we prefer to use the orig-
inal values of the reflectances at these bands to avoid any
unnecessary loss of information.

Fig. 6 shows RSD as an algorithm. In this algorithm, af-
ter calculating the sparse coefficient matrices in each sparse
coding step, the fractional abundance matrix A is calculated
as the weighted sum of all the sparse coefficient matrices.
This weighted sum is simply the mean of the matrices be-
cause we give equal weight to each matrix, as each of them
is calculated using the complete data.

4. Results and discussion
In this section, we present the results of applying the pro-

posed methods to simulated data as well as real data ac-
quired by the AVIRIS. In order to evaluate our methods we
compare the results with the state of the art approach pro-
posed in [3].

4.1. Spectral Library

We use the library of spectral signatures made
publicly available by the NASA’s Jet Propulsion Lab
(http://speclib.jpl.nasa.gov/.). This library, known as the
ASTER spectral library [2], consists of spectra of 2400 ma-
terials of seven different types (e.g. minerals, rocks). In
our experiments we take a subset of this library that con-
sists of 500 materials which belong to type mineral, rock,
soil and vegetation. This subset, D (henceforth referred as
the ‘library’) was created such that no two spectral signa-
tures in it are more than 25 deg apart. Such a high mutual
coherence between all the elements of the library is a rather
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(a) (b) (c)

Figure 7: Comparison of the results of RCSC, RSD, CSC and DLR [3]. (a) Comparison of the mean endmember detection
rate as a function of SNR (with p = 5). (b) Comparison of mean fractional abundances in false detections of endmembers
with increasing SNR (with p = 5). (c) Comparison of the mean endmember detection rate as a function of cardinality of
image pixels at 50 dB SNR.

(a) (b)

Figure 8: Comparison of optimization Equation 6, with η = 10−6 and Equation 7, with λ = 1.3. (a) Compares the mean
endmember detection rate as a function of SNR (with p = 5). (b) Shows mean fractional abundances in false detections of
endmembers with increasing SNR (with p = 5).

strict condition. However, we impose this condition for bet-
ter evaluation of the proposed methods, which aim at better
performance even under such conditions. In all of the ex-
periments we re-sample our library to 224 bands according
to the AVIRIS data. That is, each reflectance spectra in the
library is in the range 0.4− 2.5µm sampled at 10nm.

4.2. Simulated Data

We first test the proposed methods on simulated data,
for which we create synthetic image cubes of dimensions
100 × 100 × 224, where 224 is the spectral dimension.
Each pixel of a synthetic HS cube is created by mixing ‘p’
randomly selected signatures from the library. Values of
fractional abundances associated with each spectra are also
selected randomly such that the ASC holds for each pixel.
After creation of a cube, we include additive white Gaus-
sian noise. Each result presented below is the mean value
calculated with ten synthetic HS cubes. In our experiments,
we use λ = 1.3 in Equation 7. However, the results are rel-
atively insensitive to the value of λ in the range [1.1, 1.5].
This range is based on ASC and allowing for any possible
false detection of endmembers because of noise and high
mutual coherence of the library. We select λ = 1.3 with

three fold cross-validation. Value of ‘f ’ in RCSC and RSD
is kept at 0.1, whereas θ is chosen to be 7 deg.

Fig. 7 shows results of applying RCSC and RSD to the
simulated data. The figure also includes results of apply-
ing the approach in [3] (shown as DLR in the figure) and
directly performing CSC on the same data. For DLR, we
use our own implementation which was done with the help
of the authors of [3]. Fig. 7a shows the mean values of
endmember detection rate as a function of SNR. Here, end-
member detection rate is defined as the percentage of end-
members in a mixed pixel that have been correctly detected
by an algorithm. The graph shows better endmember de-
tection rates, especially at low SNR, for the proposed meth-
ods. When a sparse approximation method is used for hy-
perspectral unmixing, it can also result in false detections of
endmembers. In order to properly evaluate a method, it is
important to note the fractional abundances of the materials
which have been falsely detected by the method. Fig. 7b
shows the comparison of fractional abundances in the false
detections (as percentage) for the methods, as a function
of SNR. Here, curves for RCSC and RSD are similar to
those of CSC and DLR respectively, which implies that both
of the proposed methods are able to improve the endmem-
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ber detection rate without significantly incurring false de-
tections in the repetitions. In fact, for low SNR RSD out-
performs DLR. This is because, while taking the spectral
derivative RSD neglects the bands in the data that cause
confusion in unmixing (see Fig. 6, line ‘6’). For RSD, frac-
tional abundance in the false detections become almost zero
beyond 110 dB, whereas they remain of the order of 3 for
RCSC.

For a typical HS unmixing scenario in real images, the
cardinality ‘p’ of a mixed pixel is generally of the order of
five [14]. Therefore, the above mentioned results are eval-
uated with p = 5 for each pixel of each image. For dif-
ferent areas on land, the value of p can vary for different
pixels. Fig. 7c shows the endmember detection rate for
each method as a function of cardinality of the pixels of
the images. Here, SNR is fixed at 50 dB. In the figure, the
proposed methods clearly outperform CSC and DLR for all
of the values of p. Notice that, the results for CSC, RCSC
and RSD shown in Fig. 7 are obtained under our settings.
That is, for each of these methods we solve for Equation 7
with λ = 1.3, while performing sparse coding. On the other
hand, the results for DLR are obtained by solving for Equa-
tion 6, with η = 10−6 as in [3]2. It is interesting to know the
effects of formulating the sparse coding problem as Equa-
tion 7 instead of Equation 6. For both of these equations,
Fig. 8 shows the endmember detection rate (Fig. 8a) and
the fractional abundance in false detections (Fig. 8b) as a
function of SNR. In the figure, there is a clear separation
between the curves at high SNR. The main reason behind
this separation is that Equation 6 minimizes the l1 norm
of the coefficient vector without any explicit bounds on it.
This limits its performance at high SNR where high mu-
tual coherence between the pure spectral signatures result in
false detection of similar endmembers within the tolerance
allowed for the reconstruction error. On the other hand,
Equation 7 explicitly constraints the l1 norm of the coef-
ficient vector through λ, which is justified by ASC. Thus,
minimizing the reconstruction errors without explicit lower
bounds result in a better performance at high SNR.

4.3. Real Data

We apply RCSC and RSD on the real HS image collected
by AVIRIS (http://aviris.jpl.nasa.gov/data/free data.html).
From this image, we selected an HS cube of dimension
614 × 512 × 224. The spatial dimensions (614 × 512) of
this cube represent a region of Cuprite mines, Nevada which
has been well studied in Geological Sciences literature for
its surface materials. Fig. 9a shows material classification
results of this region from [9] which are generally used as
a benchmark for qualitative evaluation of hyperspectral un-
mixing approaches in remote sensing community. To apply
our methods to real data, we first drop 24 spectral bands

2Under our settings results of DLR are worse than those reported here.

in the HS cube (and the library) that have zero or very low
values of reflectance due to atmospheric absorptions. Fur-
thermore, we rely on advanced atmospheric correction al-
gorithms to convert the at-sensor radiance measurement by
AVIRIS to reflectance units in order to match spectral signa-
tures in the used library, which are measured in laboratory
conditions. These algorithms have already been applied to
the available image.

Fig. 9b shows the abundance maps created by RSD
(left) and RCSC (right) of a material ‘K-Alunite’ present
in the region. The region shown in the figure corresponds
to the region magnified in Fig. 9a. As can be seen in the
abundance maps, most of the ‘K-Alunite’ has been cor-
rectly identified by both of the methods. However, re-
sults of RSD are better in the sense that the algorithm does
not over estimate the presence of ‘K-Alunite’. This is the
concequence of coherence reduction with spectral deriva-
tive. RCSC incorrectly detects ‘K-Alunite’ at some re-
gions where the materials with similar spectral signatures
are present. For instance, it also detects ‘K-Alunite’ in some
regions which have been classified as ‘Alunite+Kaolinite
and/or Muscovite’ and ‘Kaolinite’ according to [9].

5. Conclusion

In this work, we formulate hyperspectral unmixing as a
constrained sparse coding problem and propose two differ-
ent methods to achieve high endmember detection rates, es-
pecially with low SNR of HS images. Both of the methods
solve for constrained sparse coding optimization function
in a repeated manner. In the first method, called RCSC,
we systematically remove a small fraction of spectral bands
from the data each time before computing a sparse coeffi-
cient matrix. The final fractional abundance matrix is then
computed as a weighted sum of all the computed sparse co-
efficient matrices. In the second method, called RSD, we
make use of spectral derivative, which is operated on all
the bands of the data except a small fraction of them. Af-
ter sparse coding with the differentiated data each time, we
calculate the fractional abundance matrix as the mean of
the sparse coefficient matrices obtained in each sparse cod-
ing step. We apply the methods to both simulated as well
as real HS images. We compare the results of hyperspectral
unmixing with a state of the art approach proposed in [3].
Results show better performance of the proposed methods,
especially at low SNR of HS images.
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