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Abstract 

This cnntribiitinn presenfs (1 low-coinplexiy camera qo- 
motion estimation nlgoriihin fo r  real-time applications. 
TIie algurithin uses rrjeerirure based approaclifi~r motion es- 
timatioti. A new t n e t l d  i.s in fr{iducedfor fiwture selection 
which h i t s  the nirinlJei- of fefeatiiia points to be tmcked (itid 
hcis ci low depeirdmcy ori structure in the image. Both these 
fuctors are important iii  real time applications, a s  lesser 
features to track result in lower computational carnplexitl. 
and lesser dcpendciq oii image structure results in smaller 
vat'iatiorzs i i t  cornputationid time for dijerenr irntrges. This 
paiii it1 speed is achieved t i t  the cost qf U slightl~~ reduced 
robusttiess and accuracy. This trade-oflbehveeri speed and 
acci(racy p a p  ufl particdurly in sratic scenes where high 
reduction in canrputationul  COS^ is uchieved without the ac- 
cumcy pamlty. This algorithm cut1 be used in applicatiaiis 
where ab1 estimate of camera motion is required arid law 
coinputntional complexity is afprimaiy coricern. 

1. Introduction 

Morion in an image can be divided into global and lo- 
cal. Motion induced in the image due to c i "  movement 
i s  called global motion, whereas small moving objects in  
the scene result i n  local motion in the image. If the moving 
object is large enough to occupy the complete image, it will 
produce the same effect as camera movement for ambient 
illumination, resulting in global motion in  the image. The 
goal of a motion estimation technique is to assign a mo- 
tion vector (displacement) to each pixel in an image. The 
choice of a motion estimation approach strongly depends 
on the target application. A key issue when designing a 
motion estimation technique is its degree of efficiency with 
enough accuracy to serve the purpose of intended applica- 
tion. Difficulties in motion estimation arise from occlusion, 
noise, lack of iniage texture, and illumination changes. 

Existing motion estimation techniques can be catego- 
rized into feature-based [ l ,  2, 31 and region-based 14, 5, 61 
approaches. Brvszio et d. [2] have presented a three-step 

feature-based approach for camera parameters estimation. 
Tn the first step comers are detected from each image. Then 
correspondences of features between an image and the next 
in the sequence are established. The final parameter esli- 
mation employs the random sampling and consensus pro- 
cedure RANSAC 171. Acceleration sensors in combination 
with image analysis have proved to be useful for camera 
ego-motion estimation [ I ] .  Richter [3] proposed to divide 
the image into several tiles to get features from each image 
area, resulting in better global motion estimation. Region- 
based methods divide the image into regions and then esti- 
mate the motion of each region. The emerging H.264/AVC 
standard [4] proposes multi-resolution region-based itio- 
tion estimation with sub-pixel accuracy. 

Region-based global motion estimation algorithms are, 
in general, very accurate, but have high computational 
complexity. Feature-based methods are more suitable for 
use in real-time applications. We have used a variariiln of 
the three step approach by Brosziu [ 2 ] ,  so that we get onIy 
the necessary information for 2D camera parameter esti- 
mation. Then we use some approximations to reduce the 
computational complexity. Our approach is discussed in 
detail in section 2. Section 3 gives the computatjonal coni- 
plexity analysis along with the quantitative evaluation of 
the algorithm accuracy. Section 4 concludes [he paper. 

2. Camera ego-motion estimation 

The motion observed i n  an image sequence c m  be 
caused by camera motion (egomotion) and/or by motion 
of objects moving in the scene. In this paper the case of a 
camera moving in  a static scene is addressed, but the range 
of robustness against object motion is also shown. 

2.1. Motion Models 

An image acquisition system projects the 3D world onto 
a 2D image plane with image coordinates i; = ( x , ~ ) ~  E A, 
where A is an orthogonal sampling grid. Upon this pro- 
jection, a moving camera results in 2D motiorz trojeclories 
of image points. The 2D displacemeni can be expressed as 
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follows: 

where p ’ ( r )  and p’(t+ T )  represent the position of an image 
point at a time difference of T. 

Different models exist i n  literature [XI to model the dis- 
placement z(i;). Parametric models are most commonly 
used as they are easy to implement. We have used a trans- 
lational parametric model for 2D motion. We make the as- 
sumption that the image intensity remains constant along 
the motion trajectory. This assumption implies that any 
intensity change is due to motion, that scene illumina- 
tion is constant, and that object surfaces are opaque. Al- 
though these constrainls are almost never satisfied exactly, 
the constant-intensity assumption approximately describes 
the dominant properties of natural image sequences, and 
motion estimation methods based on it work well. 

2.2. Method 

Camera ego-motion c m  be estimated from the optical 
or normal flow derivcd between two frames [6 ] ,  or from 
the  correspondence of distinguished features (points, line%, 
contours) extracted from successive frames [ 2 ] .  We have 
used a feature-based approach because of its IOW computa- 
tional cost. The block diagram of the algorithm is as shown 
in Fig. 1 .  

Input 

Feature Template 
Extiaction Se e m n  hiatcmg 

Figure 1: Block diagram of proposed algorithm for 
camera ego-motion estimation. 

2.2.1. Feature Extraction. In the first stage corners are 
detected from the camera image based on SUSAN corner 
detector [9]. For each image of a sequence the list of cor- 
ner coordinates L,, = { $n,, , . . . ,,3,,,i,. . . is extracted, 
where ijn,i are the image coordinates o fa  corner i in image 
1 1 ,  and N I S  the total number of corners in the image 11. 

2.2.2. Feature Selection. For an image of a structured 
scene, the number of detected corners is quite high, So 
it is not possible to track all of them in real-time. Therefore 
M out of N corners are selected (or further processing. In 
order to ensure getting features from every image area, the 
image can be divided info several tiles 131. We perform cor- 
ner selection based on ncarest neighborhood criterion to a 
reference grid. The reference grid we have used is as shown 
i n  Fig. 2 .  

Figure 2: Reference points used for corner selection. 
The center point of each 5 x 5 rectangle is used as a ref- 
erence point. 

The corner selection is done such that for each reference 
point the nearest corner point is selected. Therefore for jth 
reference point G j ,  a corner point minimizing the distance 

[ fii -;,I is selected. The corner is marked so that i t  is  not 
selected more than once. Hence we obtain a selected corner 
list C,, = 7,, , , . . . , rn ,,,. . . , I , , ~ } .  where 7n,j are the image 
coordinates of the corner nearest to j th  reference point in 
image n, and M is the total number of selected corners. 

2.2.3. Template Matching. The selected corners C, are 
tracked in the next image, by a block-matching of 5 x 5 
block in a I5 x 15 search window, instead of establishing 
correspondences with corner list L,+, of the next image. 
The reason is that due to camera noise and slight illumina- 
tion changes, the SUSAN’corner detector will not extract 
lhe same corners from a static scene. This is illustrated in 
Fig. 3 for the case of a still camera pointing toward a static 
scene. 

-. * { ’  

i -1 

Figure 3: Images to demonstrate instability of corners 
detected by SUSAN corner detector. 

The computation time required for performing a full 
search block-matching does not depend on texture in the 
image. This results in  a uniform computation time for each 
image, which is a desired feature for real time applica- 
tions. The other advantage of full search block-matching is 
that it  ensures finding a global minimum within the search 
range as comparcd to a 3-step search method which can get 
trapped in a local minima’. Let ( x , y )  be the position of the 
center point of the jth reference template in the image n at 
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time t .  We want to find the best match €or this template in 
image n + 1 at timet + r.  Mean absolute difference (MAD) 
as defined in Eq. 2 is used as the error criterion for selecting 
the best match 

Parameter Explanantion 

B BIock size in pixels 

( B  = 25 for a 5 x 5 block) 

Total number of corners in the image 

Number of selected corners (M 5 N )  
Search window size in pixels 

N 
M 
S 
R Image size in pixels 

kH Operations per pixel required for 
Harris corner detector 

Operations per pixel required for 

SUSAN corner detector 

- 
ks 

g,+,(.r + U f k Y  + v -t [ ) I  (2) 

where g,( j j )  is the image intensity at spatio-temporal po- 
sition (,5,t), B is the template size, and t u , ~ )  define the 
search region around the ternplate center point. The loea- 
tion ( x + ~ t , p + v )  resulting in minimum valueof MAD(u,v) 
(Eq. 2) i s  defined as the best match for the reference tem- 
plate. So a motion vector 

, is  assigned to the template. 
MAD(u, i )=ni in  

%,, = (U1 y)I 

2.2.4. Dominant Motion Estimation. The template 
matching module gives us one motion vector for each 
selected comer. The next task is to estimate the 2D camera 
motion, i.e. translation in x and y directions, from these 
motion vectors. Choon ct al. 16) have proposed median 
liltering for dominant motion estimdtion. This requires at 
least more than half of the vectors to have similar value for 
correct estimation. 

We use the concept of simple majority for dominant mo- 
tion estimation. This introduces more flexibility by hav- 
ing freedom to choose rhreshold and tolerance for selec- 
tion among candidate vectors. The concept of tolerance 
implies lhal while evaluating a particular candidate, ex- 
act niatches as well as matches within a user-defined tol- 
erance are counted. Thresholding means that the nuniber 
of matches for a selected candidate (the candidate with 
highest number of marches) must be higher than the user- 
defined threshold. Olherwise the resultant motion vector is 
set to zero. 

2.3. Error Metrics 

We have used two different error metrics to evaluate our 
aIgorithm. In order to examine the performance of our tech- 
nique on real image sequences for which ground truth 2D 
motion fields are not known, we minimize the displaced 
,frame dijfeerencs (DFD) error. Let g f ( z )  be the image in-  
tensity at spatio-temporal position @,t) .  Then DFD error 
is defined as 

where ~ { + ~ ( j 7 -  dr,=(j7)) i s  called a motion-compensated 
prediction of,qt(,Z], and R i s  the  number of pixels in the im- 
age. DFD-error is also the criterion or choice for evaluating 

motion estimation algorithms in practical video coders to- 
day. 

In order to examine the performance of our technique 
on real sequences for which ground truth 2D motion fields 
are known, we use vector differences as an error measure. 
Let ZC be the correct displacement, and be the estimated 
displacement. Then the motion estimation error E,,, i s  

E,n = lG, - Gcl (4) 

3. Results 

3.1. Computational Complexity Analysis 

The proposed algorithm is an extension of the approach 
by Brnszio [2 ]  and has a significantly lower computational 
cost as shown in table 1. The computational complexity cr 
for the reference algorithm can be written as 

(5) 

where K is the number of pixels in the whole image, k ,  is 
the number of operations per pixel required to find Harris 
comers, N is the total number of corners in the image, and 
B is the template size. Similarly, the computational com- 
plexity c p  €or the proposed algorithm can be written as 

cr = Rk,  +2N2B + ( N -  1)2 

cI, = Rks + 2NM + 2SMB + S (6)  

where k, is the number of operations per pixel required to 
find SUSAN corners, M is the number of selected corners, 
and S is the search range. 

For an image resolution R = 320 x 240, block size B = 
5 x 5 ,  search window size S = 15 x 15, and the number 
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1 

Reference Algorithm [2] Proposed AIgorithm 
I 

Stage Technique Computdional Technique Computational 

used Complexity used Complexity 

Feature Harris 95 Add and SUSAN 32.25 Add and 

Extraction corner 22 Mult. corner 0.75 Mult. 

detector opdpixel detec toi- ops/IjixeI 
r-- 

Feature Nearest NM square root 

Sekction Not used Neigh- and comparisons 

bourhood (wors! case) 

Corres- 2N’B Full-Search 2 S V B  
Template pondence AddlSub and Block AddlSub and 

of selected comers M = 13, Eqs. 5 and 6 are plotted in 
Fig. 4. The computational complexity 15 plotted in  terms 
of operations per image. as the exact time required for each 
operation is hardware dependent. 

Figure 4 shows that the computational effort required 
for  the  camera ego-motion estimation i s  significantly re- 
duced in the proposed algorithm as compared to the refer- 
ence algorithm. The dependence of the computational cost 
on number of corners in the image IS also reduced from 
o(N2) tQ o(hr) 

3.2. Performance Evaluation 

The performance of the proposed algorithm was evalu- 
ated with four image sequences. Image sequences 1 and 
2 contain a camera movement, where the precise 2D mo- 
tion fields were not known. For those image sequences dis- 
placedfrarne difference (Eq. 3) was used as the error met- 
ric. The image sequences 3 and 4 contain an object mo- 
tion. The purpose of evaluation on these image sequences 
IS to examine the effect of object motion on the camera ego- 
motion estimation algorithm Ideally, the algorithm should 
not report any camera motion in this case, and Eq 4 is used 
as error metric These image sequences were obtained from 

Translating Camera: In this image sequence, the cam- 

_Fc_ /- 

Figure 4: Comparison of computations required per 
image for the reference and proposed algorithm. 

[IO].  



era inoves.orthogonally to its line of sight. The scene is 
static with no objecl motion. The length of the image se- 
qucnce is 100 frames, and 25th frame in the sequence is 
shown in Fig. 5 .  This sequence was obtained from [ I  I ] .  

Figure 5: Frames 25 (left) of the image sequence 
“Translating Camera”, with the motion vectors ex- 
tracted, and the displaced frame difference im- 
age(rightj. 

Television: In this image sequence, the camera moves 
orthogonally to its line of sight, in front of a television 
set. The purpose of this test sequence was to investigate 
the effect of brightness changes due to the presence of a 
television screen in the image, which violates the constani- 
intensity assumption. This sequence will evaluate the per- 
formance of the algorithm in typical indoor environments 
with low brightness level and poor texture. The length of 
the image sequence is 15 frames, and the 5th frame in the 
sequence is shown in Fig. 6. 

Figure 6: Frames 25 (left) of the image sequence “Tele- 
vision” with the motion vectors extracted, and the dis- 
placed frrrtne difference image(right). 

Walk Straight: In this image sequence, a person walks 
straight from right to left i n  front of ii stationary camera. 
There is no other object motion except the shadow of the 
walking person on a glass window in the background. This 
image sequence addresses the case of a poorly structured 
object moving in front of a well structured background. 
The complete image sequence consists of I25 frames, and 
frames 28 and 85 of  the sequence are shown i n  Fig. 7.  
7 UP: In this image sequence, a can is moved from left 

to right while rotating it clockwise in front of a station- 
ary camera. The object covers ii bigger area in the image 
(z 20%) and i s  well structured. The complete image se- 
quence consists of 400 frames, and frames 25 and 175 of 
the sequence are shown in Fig. 8. 

Figure 7: Frames 28 (left) and 85 (right) of the image 
sequence “Walk Straight”. 

Figure 8: Frames 25 (left) and 175 (right) of the image 
sequence “7 UP”. 

3.3. Error Measurement 

The error of the camera ego-motion estimation for the 
sequences 1 and 2 is calculated using the displaced Frame 
difference (Eq. 3). For the sequences 3 and 4, the vec- 
tor difference (Eq. 4) was calculated. Table 3 suinmarizes 
all results of emor measurement.. The average DFD-emor 
for the image sequence ”Televisinn” was higher than the 
‘Translating Camera” image sequence due to the presence 
of television set in the image. The DFD-iinages for each 
sequence are shown i n  figures 5 and 6 respectively. The al- 
gorithm performed quite well i n  suppressing the object mo- 
tion in the image sequence “Walk Straight”, delecting no 
global motion for all images in the sequence. This resulted 
in both mean error and standard deviation of 0.0 pixels. 
However for bigger object motion as in the case of iniagc 
sequence “7 UP”, the algorithm was fooled by object mo- 
tion especially when the moving object was near the image 
center. This was because of rbe feature selection proce- 
dure in which comers near image center were selected with 
higher priority. Hence the measured error was higher thm 
that for the “Walk Straight” image sequence. 

4. Conclusion 

In  this paper we have presented a camera ego-motion 
estimation algorithm for real time applications. We have 
used a new feature seiection method which lowers the 
computational complexity. Another advantage of using the 
feature selection method is that the dependence of coni- 
putational time on structure in the imagc is reduced from 
O(Nz)  to O(N) .  For image sequences with unknown 2D 
motion fields, displaced frame difference (DFD) was used 
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Table 3: Error measurement results for the tested im- 

Image 

Sequence 

Translating 

Camera 

Television 

Walk 

Straight 

7 UP 

Error Average Standard 
Metric Error Deviation 

DFD 6.39 1.19 

per pixel per pixel 

DFD 6.63 2.2 1 

per pixel per pixel 
Vectoi 0.0 0.0 

Difrercnce E,,, pixcls pixels 

E,,, 0.374 0.490 
pixels pixels 

a s  the criteria for evaluating the algorithm, whereas vector 
difference between known and estimated displacements 
was used as an error measure for image sequences with 
known 2D motion fields. 

Results show that this algorithm accurately estimates 
camera ego-motion even for  image sequences having small 
object motion If there is a big moving object  near the 
image center. the algorithm is sometimes fooled by the 
ohject motion and considers i t  as camera motion. The 
accitracy oi ' the  algorithm for static sceiies was  quite high, 
and the achieved redxtion in computational cost made the 
trade off well justified. 
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