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Abstract

This contribution presents « low-complexity camera ego-
metion estimation algorithm for real-time applications.
The algorithim uses a feature based approach for motion es-
timation. A new miethod is introduced for feature selection
which limits the number of feature points to be tracked and
has a low dependency on structure in the image. Both these
factors are important in real time applications, as lesser
Seatures to track result in lower computational complexity
and lesser dependency on image structure results in smaltler
variations in computational rime for differenr images. This
gain in speed is achieved at the cost of a slightly reduced
rohustness and accuracy. This trade-off between speed and
accuracy pays off particularly in static scenes where high
reduction in computational cost is achieved without the ac-
curacy penalty. This algorithm can be used in applications
where an estimate of camera motion is required and low
computational complexity is of primary concern.

1. Introduction

Mation in an image can be divided into global and lo-
cal. Motion induced in the image due to camera movement
is cailed global motion, whereas small moving objects in
the scene result in local motion in the image, If the moving
object is large enough to occupy the complete image, tt will
produce the same effect as camera movement for ambient
illumination, resulting in global motion in the image. The
goal of a motion estimation technique is to assign a mo-
tion vector (displacement) to each pixel in an image. The
choice of a motion estimation approach strongly depends
on the target application. A Kkey issue when designing a
motion estimation technique is its degree of efficiency with
enough accuracy to serve the purpose of intended applica-
tion. Difficulties in motion estimalion arise from occlusian,
noise, lack of image texture, and illumination changes.

Existing motion estimation techniques can be catego-
rized into feature-based [1, 2, 3] and region-based [4, 5, 6]
approaches. Broszio et al. [2] have presented a three-step
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feature-based approach for camera parameters estimation.
Tn the first step carners are detected from each image. Then
correspondences of features between an image and the next
in the sequence are established. The final parameter esti-
mation employs the random sampling and consensus pro-
cedure RANSAC | 7]. Acceleration sensors in combination
with image analysis have proved to be useful for camera
ego-motion estimation [1]. Richter [3] proposed to divide
the image into several tiles to get features from each image
area, resulting in better glabal motion estimation. Region-
based methods divide the image into regions and then esti-
mate the motion of each region. The emerging H.264/AVC
standard [4] proposes multi-resolution region-based mo-
tion estimation with sub-pixel accuracy.

Region-based global motion estimation algorithms are,
in general, very accurate, but have high computational
complexity. Feature-based methods are more suitable for
use in real-time applications. We have used a variation of
the three step approach by Broszio [2], so that we get only
the necessary information for 2D camera parameter esti-
mation. Then we use some approximations to reduce the
computational complexity. Our approach 1s discussed in
detail in section 2. Section 3 gives the computational com-
plexity analysis along with the guantitative evaluation of
the algorithm accuracy. Section 4 concludes the paper,

2. Camera ego-motion estimation

The motion observed in an image sequence can be
caused by camera motion (ego-motion) and/or by motion
of objects moving in the scene. In this paper the case of a
camera moving in a static scene is addressed, but the range
of robustness against object motion is also shown.

2.1. Motion Models

An image acquisition system projects the 3D world onto
a 2D image plane with image coordinates 7 = (x,y)7 € A,
where A is an orthogonal sampling grid. Upon this pro-
jection, a moving camera results in 2D motion trajectories
of image points. The 2D displacement can be expressed as
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follows:
d,(P) = Ple+ 1)~ B(1) (1)

where P(z) and p(r + 1) represent the position of an image
point at a time difference of T,

Different models exist in literature [8] to model the dis-
placement (7). Parametric models are most commonly
used as they are easy to implement. We have used a trans-
Jlational parametric model for 2D motion. We make the as-
sumption that the image intensity remains constant along
the motion trajectory. This assumption implies that any
intensity change is due to motion, that scene illumina-
tion is constant, and that object surfaces are opaque. Al-
though these constraints are almost never satisfied exactly,
the constant-intensity assumption approximately describes
the dominant properties of natural image sequences, and
motion estimation methods based on it work well.

2.2. Method

Camera ego-motion can be estimated from the optical
ot normal flow derived between two frames [6], or from
the correspondence of distinguished features (points, lines,
contours) extracted from successive frames [2]. We have
used a feature-based approach because of its low computa-
tional cost. The block diagram of the algorithm is as shown
in Fig. 1.
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Figure 1: Block diagram of proposed algorithm for
camera ego-motion estimation.

2.2.1. Feature Extraction. In the first stage corners are
detected from the camera image based on SUSAN corner
detector [9]. For each image of a sequence the list of cor-

ner coordinates L, = {ﬁn)l yeen ,ﬁn,i, ... ,i)’nN} is extracted,

where J, ; are the imuge coordinates of a corner { in image
3!
r, and N is the lotal number of corners in the image ».

2.2.2. Feature Selection. For an image of a structured
scene, the number of detected corners is quite high. So
it is not possible to track all of them in real-time. Therefore
M out of N corners are selected for further processing. In
order 10 ensure getting features from every image area, the
image can be divided into several tiles [3]. We perform cor-
ner selection based on nearest neighborhood criterion to a
reference grid. The reference grid we have used is as shown
in Fig. 2.
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Figure 2: Reference points used for corner selection.
The center point of each 5 x 5 rectangle is used as a ref-
erence point.

The corner selection is done such that for each reference
point the nearest corner point is selected. Therefore for jth
reference point § j» & corner point minimizing the distance

lﬁf —E]'j( is selected. The corner is marked so that it is not
selected more than once. Hence we obtain a selected corner
list C, = P RTERRTY PR AV where T j A€ the image
coordinates of the comer nearest to jth reference point in
image n, and M is the total number of selected comers.

2.2.3. Template Matching. The selected comers C, are
tracked in the next image, by a block-matching of 5 x 5
biack in a 15 x 15 search window, instead of establishing
correspondences with corner list L, | of the next image.
The reason is that due to camera noise and slight illumina-
tion changes, the SUSAN corner detector will not extract
the same corners from a static scene. This is illustrated in
Fig. 3 for the case of a still camera pointing toward a static
scene.

Figure 3: Images to demonstrate instability of corners
detected by SUSAN corner detector.

The computation time required for performing a full
search block-matching does not depend on texture in the
image. This results in a unitorm computation time for each
image, which is a desired feature for real time applica-
tions. The other advantage of full search block-matching is
that it ensures finding a global minimum within the search
range as compared to a 3-step search method which can get
trapped in a local minima. Let (x,¥) be the position of the
center point of the jth reference template in the image » at



time r. We want to find the best match for this template in
image #+ 1 at time ¢ + t. Mean absolute difference (MAD)
as defined in Eq. 2 is used as the error criterion for selecting
the best match

I

MAD(u,v) = B

2 }gr(x'}"k:y"’l) -
kicB

8;+r(-’5+“+k7)’+"+l” (2)

where g, () is the image intensity at spatio-temporal po-
sitton (p,r), B is the template size, and (1, v} define the
search region around the template center point. The loca-
tion (x-u,y-+v) resulting in minimum value of MAD(u, v)
(Eq. 2} is defined as the best match for the reference tem-
plate. So a motion vector

-

m, = U,V
o ( ' )lMAD(u,v);-min

is assigned 1o the template.

2.2.4. Dominant Moetion Estimation. The template
matching module gives us one motion vector for each
selected corner. The next task is to estimate the 21D camera
motion, i.e. translation in x and y directions, from these
motion vectors. Choon ¢t al. 16] have proposed median
filtering for dominant motion estimation. This requires at
least more than half of the vectors to have similar value for
correct estimation.

We use the concept of simple majority for dominant mo-
tion estimation. This introduces more flexibility by hav-
ing freedom to choose threshold and tolerance for selec-
tion among candidate vectors. The concept of tolerance
implies thal while evalnating a particalar candidate, ex-
act matches as well as matches within a user-defined tol-
erance are counted. Thresholding means that the number
of matches for a selected candidate (the candidate with
highest number of matches) must be higher than the user-
defined threshold. Otherwise the resultant motion vector is
set to zero.

2.3. Error Metrics

We have used two different error metrics to evaluate our
algorithm. In order to examine the performance of our tech-
nique on real image sequences for which ground truth 2D
motion fields are not known, we minimize the displaced
frame difference (DFD) error. Let g;(B) be the image in-
tensity at spatio-temporal position {7,). Then DED error
is defined as

! = - -
J{d) ZE Z ’.S’r(p)’_gf+r(ﬁ"dr,r(!9))! (3)
Bea
where g, (F—d, ((P)) is called a motion-compensated
prediction of g,(7), and R is the number of pixels in the im-
age. DFD-error is also the crilerion of choice for evaluating

motion estimation algorithms in practical video coders to-
day.

In order to examine the performance of our technique
on real sequences for which ground truth 2D motion fields
are known, we use vector differences as an error measure.
Let ##i, be the correct displacement, and #, be the estimated
displacement. Then the motion estimation error £y, is

Em = l’_ﬁc - "Tle, (4)
3. Results

3.1. Computational Complexity Analysis

The proposed algorithm is an extension of the approach
by Broszio [2] and has a significantly lower computational
cost as shown in table 1. The compulational complexity ¢,
for the reference algorithm can be written as

¢r = Rl +2N"B 4+ (N —1)? (5)

where R is the number of pixels in the whole image, &, is
the number of operations per pixel required to find Harris
corners, ¥ is the total number of corners in the image, and
B is the template size. Simifarly, the computational com-
plexity ¢, for the proposed algorithm can be wrilien as

¢p = Rks+ 2NM +2SMB+ S ()

where kg is the number of operations per pixel required to
find SUSAN corners, M is the number of selected corners,
and § is the search range.

Table 2: Parameters for the computational complexity
analysis as described in tabie I,

Parameter Explanantion ]
B Block size in pixels
(B =25 fora 5 x 5 block)
N Total number of corners in the image
M Number of selected corners (M < N)
b Search window size in pixels
R Image size in pixels
kpy Operations per pixel required for
Harris corner detector
kg Operations per pixel required for
SUSAN cormer detector

For an image resolution R = 320 x 240, block size B =
5 x 5, search window size § = 15 x 13, and the number
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Table 1: Computational complexity for each stage of the reference algorithm [2] and the proposed algorithm. Param-

eters are described in table I1.

Reference Algorithm [2]) Proposed Algorithm
Stage Technique | Computational | Technique | Computational
used Complexity used Comp{exity
Feature Harris 95 Add and SUSAN 32.25 Add and
Extraction corner 22 Mult. corner 0.75 Mult.
detector ops/pixel detector opsfﬁixel
Feature Nearest NM square Toot
Selection Nor nsed Neigh- and comparisons
bourhood (worsi case)
Corres- IN'B Full-Search 25SMR
Template | pondence | Add/Sub and Block Add/Sub and
Matching | Analysis (N-—1)? Matching : S
comparisons comparisons
Dominant Simple
Motion RANSAC Not fixed Majority Not fixed
Estimation ; |

~ -~ Refarence Algorithim
—— Proposed Algorithm

Figure 4: Comparison of computations required per
image for the reference and proposed algorithm.
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of selected corners M = 13, Egs. 5 and 6 are plotted in
Fig. 4. The computational complexity is plotted in terms
of operations per image, as the exact time required for each
operation is hardware dependent.

Figure 4 shows that the computational effort required
for the camera ego-motion estimation is significantly re-
duced in the proposed algorithm as compared to the refer-
ence algorithm. The dependence of the computational cost
on number of corners in the image is also reduced from

O(N?) to O(N).
3.2, Performance Evaluation

The performance of the proposed algorithm was evalu-
ated with four image sequences. Image sequences 1 and
2 contain a camera movement, where the precise 2D mo-
tion fields were not known. For those image sequences dis-
placed frame difference (Eq. 3) was used as the error met-
ric. The image sequences 3 and 4 contain an object mo-
tion. The purpose of evaluation on these image sequences
1s to examine the effect of object motion on the camera ego-
meotion estimation algorithm. Ideally, the algorithm should
not report any camera motion in this case, and Eq. 4 is used
as error metric. These image sequences were obtained from
[10]. ‘
Translating Camera: In this image sequence, the cam-



era moves .orthogonally to its line of sight. The scene is
static with no object motien. The length of the image se-
qucnce is 100 frames, and 25th frame in the sequence is
shown in Fig. 5. This sequence was obtained from [11].

Figure 5: Frames 25 (left) of the image sequence
“Translating Camera”, with the motion vectors  ex-
tracted, and the displaced frame difference im-
age(right),

Television: In this image sequence, the camera moves
orthogonally to its line of sight, in front of a television
set. The purpose of this test sequence was to investigate
the effect of brightness changes due to the presence of a
television screen in the image, which violales the constant-
intensity assumption. This sequence will evaluate the per-
formance of the algorithm in typical indoor environments
with Jow brightness ievel and poor texture. The length of
the image sequence is 15 frames, and the 5th frame in the
sequence is shown in Fig. 6.

Figure 6: Frames 25 (left) of the image sequence “Tele-
vision” with the motion vectors extracted, and the dis-
placed frame difference image(right).

Walk Straight: In this image sequence, a person walks
straight from right to left in front of a stationary camera.
There is no other object motion except the shadow of the
walking person on a glass window in the background. This
image sequence addresses the case of a poorly structured
object moving in front of a well structured background.
The complete image sequence consists of 125 frames, and
frames 28 and 85 of the sequence are shown in Fig. 7.

7 UP: In this image sequence, a can is moved from left
to right while rotating it clockwise in front of a station-
ary camera. The object covers a bigger area in the image
(== 20%) and is well structured. The complete image se-
quence consists of 400 frames, and frames 25 and 175 of
the sequence are shown in Fig. 8.

Figure 7: Frames 28 (left) and 85 (right) of the image
sequence “Walk Straight™.

Figure 8: Frames 25 (left) and 175 (right) of the image
sequence 7 UP”.

3.3. Error Measurement

The error of the camera ego-motion estimation for the
sequences | and 2 1s calculated using the displaced frame
difference (Eq. 3). For the sequences 3 and 4, the vec-
tor difference (Eq. 4) was calculated. Table 3 summarizes
all results of error measurement.- The average DFD-error
for the image sequence “Television” was higher than the
“Translating Camera” image sequence due to the presence
of television set in the image. The DFD-images for each
sequence are shown in figures 5 and 6 respectively. The al-
gorithm performed quite well in suppressing the object mo-
tion in the image sequence “Walk Straight”, detecting no
global motion for all images in the sequence. This resulted
in both mean error and standard deviation of 0.0 pixels.
However for bigger object moticn as in the case of image
sequence “7 UP”, the algorithm was fooled by object mo-
tion especially when the moving object was near the image
center. This was because of the feature selection proce-
dure in which corners near image center were selected with
higher priority. Hence the measured error was higher than
that for the “Walk Straight” image sequence.

4. Conclusion

Ia this paper we have presented a camera ego-motion
estimation algorithm for real time applications. We have
used a new feature selection method which lowers the
computational complexity. Another advantage of using the
feature selection method is that the dependence of com-
putational time on structure in the image is reduced from
O(N?) to O(N). For image sequences with unknown 2D
motion fields, displaced frame difference (DFD} was used



Table 3: Error measurement results for the tested im-
age sequences.

F mage Error Average | Standard
Sequence Metric Error Deviation
Translating DFD 6.39 1.19
Camera per pixel | per pixel
Television DFD 6.63 221

per pixel | per pixel
Walk Vector 0.0 0.0
Straight Difference E,, pixels pixels
7UP E, 0.374 0.490
pixels pixels

as the criteria for evaluating the algorithm, whereas vector
difference between known and estimated displacements
was used as an error measure for image sequences with
known 2D motion fields.

Results show that this algorithm accurately estimates
camera ego-motion even for image sequences having small
object motion. If there is a big moving object near the
image center, the algorithm is sometimes fooled by the
object motion and considers it as camera motion, The
accuracy of the algorithm for static scenes was quite high,
and the achieved reduction in computational cost made the
trade off well justified.
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