
Logical Layout Analysis using Deep Learning

Annus Zulfiqar‡, Adnan Ul-Hasan⋆, and Faisal Shafait†

‡†National University of Sciences and Technology (NUST), Islamabad, Pakistan
{‡azulfiqar.bee15seecs, †faisal.shafait}@seecs.edu.pk

1⋆†Deep Learning Lab, National Center of Artificial Intelligence, Islamabad, Pakistan.

Abstract—Logical layout analysis plays an important part in
document understanding. It can become a challenging task due to
varying formats and layouts. Researchers have proposed different
ways to solve this problem, mostly using visual information in
some way and a complex pipeline. In this paper, we present a
simple technique for labelling the logical structures in document
images. We use visual and textual features from the document
images to label zones. We utilize Recurrent Neural Networks,
specifically 2 layers of LSTM, which input the text from the
zone that we want to classify as sequences of words and the
normalized position of each word with respect to the page width
and height. Comparisons are made by comparing the image
under test with the known layouts and labels are assigned to
zones accordingly. The labels are abstract, title, author names,
and affiliation; however, the text also contains very important
information for the task at hand. The presented approach
achieved an overall accuracy of 96.21% on publicly available
MARG dataset.

I. INTRODUCTION

Deep learning has proven to outperform human accuracy in
many computer vision and natural language processing tasks.
Therefore, deep learning has become the default choice when
use textual and visual features for labelling of logical units
in document images. Logical labelling enables us to extract
information from documents. Parts of documents are labelled
such as Author, date, abstract, etc., so that retrieval efficiency
can be increased. Logical layout analysis is the first step in
any advanced searching systems where the data is contained
inside a document such as a scientific papers and articles.

Layout specific approaches have been proposed in literature
where the knowledge utilized to label zones in a document
image comes from the geometrical features and the physical
appearance of the layouts that have already been seen by the
model during training. But this approach works well only if
the test image has a similar layout as compared to the layouts
in the training set.

Two important features can be used for layout analysis and
labelling zones in document images, the position of the text
block on the page and the text inside those blocks. Text can
provide a lot of information about the nature of the zone, and
the information about the location of this text on the page
further helps in assigning a label to it.

It is possible to read a part of text and tell whether it
was the title or name of the author. The visual information
conveys some information as well, for example in this paper
the abstract has been italicized. It is possible to just look at
the paper and tell which blocks of text belong to the abstract

and which do not. Also the title is normally a huge block of
text on the top of the page.

Therefore, both visual and textual features can help in
logical understanding of a document image. One can tell that
the abstract will always come before the introduction in a
paper, and that the title will be a few words only and smaller
than the abstract. Similarly the affiliation will usually contain
some addresses that we can be used to recognize these blocks
in an image.

Our hypothesis in this work is that if a human can tell
the difference between these zones based on their location
and the text that they contain, then a machine learning model
trained with sufficient data should also be able to do that. But
visual features alone cannot provide enough information to
label new layouts with good accuracy. Varying layouts makes
this problem difficult to solve and efforts are being put in to
come up with generalized systems for logical layout analysis
on a broad spectrum of document classes. For the purpose of
this paper, only the positions of the text blocks, positions of
individual words in those blocks and their text has been used.

Natural language processing (NLP) is one of the paradigms
in which machine learning has clearly outperformed heuristics
and statistical approaches used in the past. We are now
witnessing learned models to do things that were not possible
with the traditional approaches. Most of the research in this
field these days focuses on search, that does not require the
user to type in long queries but simply ask the program for
something and the natural language spoken by the person
is automatically recognized as a query and the results are
returned. The most popular commercial applications of this
technology are found in Google’s home, Amazon’s Alexa,
Window’s Cortana and Apple’s Siri assistant systems. Other
common applications of NLP include language modelling,
language translation, speech recognition and image captioning.
These powerful applications clearly indicate the state of the art
and what future this technology holds for us. For the purpose
of our work the natural language that we want to process is
not in the form of audio but plain text. Therefore we need
models that are able to comprehend written text, make sense
of it and recognize them as being titles of papers or names of
people. We need vectors to represent text as arrays of numbers
so that some learning network can process the text and output
some predictions against it.

Recurrent neural networks (RNN), and especially its vari-
ant Long Short-Term Memory (LSTMs) [2] have been proven
to be ideal for learning from sequential data. Text is one
example of such data. Every single word in a sentence is linked
to all other words in the sentence and every single sentence in



Figure 1: A simplified diagram of a single LSTM unit. The
next state is a function of input at the current timestep as well
as the previous state.

a paragraph or zone is connected to all other sentences in the
zone. We need to keep track of these links in order to make
some sense of what the text means. RNNs have an internal
memory that keeps track of what it has already seen in a part
of a sequence and that keeps changing the state of the RNN.
It is possible to imagine RNNs as being state machines (see
Figure 1) because the next state of an RNN is a function of
both: the input at the current time step as well as the previous
state of the RNN. But long term dependencies (or links) are
better learned by LSTMs [2]. LSTM units are embedded into
RNNs to learn these dependencies. LSTMs are placed between
RNN layers such that the output of one RNN layer is the input
to the LSTM and the value stored in the LSTM memory cell
can be the input to the next RNN layer. For this reason we
have chosen to work with LSTMs.

This paper is further arranged as follows. Section II
overviews the related research work that has been carried
out in past. Section III describes our methodology in detail.
Section IV outlines the experimental details of our method
and Section V concludes the paper with discussion and future
work.

II. RELATED WORK

Marc [4] did a very similar work where Named Entity
Recognition was applied on the Grotoap2 dataset. Their model
reads the document from left to right feeding in the words with
their locations into two layers of bidirectional LSTMs. They
achieved accuracy up to 94.47% on the Grotoap2 dataset.

Rangoni et al. [6] devised a dynamic perceptive neural
network and used the geometric, morphological, and semantic
features in the images to label zones. They analyzed the output
of their model after each test to decide whether the output
was correct or the input needed to be modified and fed back
into the network. The network overall used feedback with
three feedback iterations and a complex pipeline that also
utilized k-means on the way for finding which of the known
layouts the image under test best resembled to make correct
predictions about the text zones. They have demonstrated an
overall accuracy of 97.5% on MARG dataset.

Aiello et al. in [1] presented a technique on labelling the
logical zones in document images and also predicting the

reading order. They utilized global and spatial locations of
document objects (title, caption, etc.) in the form of thirteen
relations: precedes, meets, overlaps, starts, during, finishes,
equals, and their inverses to describe spatial relationships
among the entities in the document image in the form of thick
boundary rectangle relations (TBRR) and predicted the reading
order in the document by assuming that all text blocks are
connected with each other as vertices on a graph and then used
a spatial reasoning module along with NLP (natural language
processing) to find the weights on the edges. They used
Desicion Tree as a classifier with features including aspect-
ratio, font style and number of lines. Performance measure on
the UW-II database yielded up to 98% precision.

Todoran et al. [9] presented a model that predicts the
reading order in document images from vast number of classes
on the basis of the spatial features in the image and a spatial
reasoning module that makes the decision on the basis of the
location of each individual text block.

van Beusekom et al. [10] demonstrated an example based
approach in which a set of labeled document layouts and a
single unlabeled document layout is taken as input and their
solution finds the best matching layout in the set. The labels
of this layout are used to label the new layout. The similarity
measure for layouts combines structural layout similarity and
textural similarity on the block-level.

Shafait et al. [7] presented an approach that models known
page layouts as a structural mixture model. Then a proba-
bilistic matching algorithm is presented that gives multiple
interpretations of input layout with associated probabilities. [7]
has reported 99.6% accuracy on the problem of geometrical
layout analysis on a portion of MARG and some other dataset,
a total of 1300 images from 6 journals.

III. METHODOLOGY

This section describes our approach using LSTM networks.
The basic architecture of a single LSTM unit is as follows:
One LSTM unit has a memory cell, to remember some analog
value, which is controlled via three gates, or controlling vari-
ables that are set and reset by the rest of the RNN surrounding
this LSTM. These three gates are called the read gate, the
write gate and the keep or forget gate. The names given to
these gates are self-descriptive. Firstly, we set the keep gate
to 0 to tell it that it should wipe the information stored in the
LSTM memory cell. It does this by a multiplicative action.
The value of the keep gate is always between 0 and 1, a zero
meaning forget everything by multiplying the stored value by
a 0. A 1 means retain whatever analog value is in the cell
by multiplying it by a 1, and some other value of the keep
gate, say 0.3 means remember only 30% of whatever is in the
memory cell. The write gate is then activated by the rest of the
network to let information flow into the LSTM. So if the write
gate is 1 it means that we are now writing a value into the
LSTM memory cell. Once written, we deactivate the write gate
and set the value of keep or forget gate to 1. So now the LSTM
unit will remember this value as long as the keep gate is set to
1. Whenever this value is needed at some point in the future,
we simply set the read gate to 1 and the RNN that follows this
LSTM block can read the value from the LSTM’s memory
cell. A simplified diagram of a single LSTM unit is shown in



Figure 2: Our Model: LSTM 1 and 2 represent the first and
second LSTM layers. Each layer has 256 units. ReLU has been
used as activation function in current work.

Figure 1. Further details on the implementation of these gate
mechanisms and how these LSTMs are embedded into RNNs
can be found in [2]. By using these RNNs and LSTMs, a light
weight model is presented in next section that will need the
words in a zone along with their coordinates converted into
long vectors and the network will directly predict its label that
whether it is the name of the author or his affiliation.

A. Our Model

For the purpose of this work, we assume that zone corners
are available to us, so we will use the zone coordinates
from the ground truth, but the text and positions of each
word will be taken from OCR output, that will be performed
on the document images using these zone corners. We have
used tesseract OCR engine to extract textual blocks from
the document image. The vectors obtained using GloVE [5]
(for each individual word from the tesseract output for each
zone) were appended with their normalized positions on the
document page and fed into 2 layers of LSTM network,
each layer having 256 LSTM units, followed by 2 matrix
multiplications with ReLU used as the activation function.
So the overall network architecture is extremely simple: an
input layer, followed by 2 layers of LSTMs having 256 LSTM
units each, and finally two matrix multiplications at the end to
predict the zones. A simplifed block diagram of the network
is shown in Figure 2. The number of time steps, that is the
number of words in the text zone in our case is 128, so the
sequence length cannot be longer than 128. If the sequence
length is longer than 128, we truncate the access words and if
the sequence already contains words less than 128, we append
0s.

B. Feature Vectors

Since the model needs to learn numbers as weight and
bias matrices in the network and predict the class of the text
as numbers as well, therefore we need to convert the input
text into numbers too. Words in the text are converted into
large vectors of numbers for providing as input to network.
For that reason we have used GloVE [5] (an unsupervised

learning algorithm for obtaining vector representations for
words) vectors open sourced by Stanford University for getting
word embedding for every word in the sequence of words
in each of the text zones. GloVE provides 300 dimensional
vectors, one vector for each word. We have used the one
trained on common crawl having 840 billion tokens and
vectors for a total of 2.2 million words. Since we also want
to append word locations to these vectors to get the spatial
position of the zone embedded into each word vector, so we
first normalize their coordinates according to page width and
height and then append them at the beginning of the vector.
This makes it a 304 dimensional vector.

C. Training

Default settings were used for training this network, soft-
max cross entropy with adam optimizer [3] for stochastic
gradient descent. A batch size of 64 sufficed for training
on MARG data. Tests were performed on the OCR output
using only the zone corners from the ground truth data. The
learning rate was set to 0.0001 and the sequence lengths in
each of the zones text was restricted to 128. Training takes only
100 iterations on MARG to give above 90% cross validation
accuracy in less than 3 minutes of training with a batch size
of 64. This should not be surprising since MARGs zones are
easy to distinguish from each other if textual features are
used. We believe that the way we initialized the model is
mostly responsible for this speed of convergence. A random
normal initializer with range between positive and negative
0.1 was chosen for the two LSTM layers, and for the two
matrix multipliers we used random normal initializer with
mean and deviation 0.5 and 1 respectively. We also used
dropout with a keep probability of 0.7 between the last two
matrix multiplications for one of the 2 experiments.

IV. EXPERIMENTS AND RESULTS

A. Data set

MARG (Medical Article Records Groundtruth) [8] is a
freely available repository containing front pages of medical
articles of renowned journals and their associated ground truth.
It contains a large variety of journal layouts with several
examples of title pages from each journal. It was developed
as a part of the efforts made in digitizing the US National
Library of Medicine. It contains 4 major zones to label namely
title, authors, affiliation, and abstract. The journal layouts
are categorized into nine classes based on the geometric
arrangement of logical page blocks (title, author, affiliation,
abstract). Eight of the layouts are unique in their geometrical
features while the last one contains all of the layouts that are
smaller in number.

We will only compare our results with those papers that
have demonstrated their results on MARG dataset.

B. Experimental Evaluation

First we used 50% of total document images in MARG
for training, 10% for evaluation and 40% for testing. With
this split we get an overall accuracy of 96.21% on MARG.
[6] reported an error rate of less than 2.5% on MARG. It
seems that their model performs better in this case but it has



Figure 3: A labelled image from MARG dataset

to be noted that their model uses a feedback mechanism with
up to 3 perceptive cycles and alter the input to better match
the representation of a known layout, against which we have
a lightweight feed-forward network that gives less than 4%
error rate in a single pass with the same proportion of the
data used for training the model. Another thing to be noted
is that our approach is layout agnostic because we are not
trying to match the test image with any of the known layouts
although the positions of the text zones are used because the
positions of title and names of the author are usually placed in
the same region on the title page of scientific papers. Table I
reports our accuracies on this test for each of the four zones.

Zone Accuracy%
Title 94.95%

Author 97.14%
Abstract 96.64%

Affiliation 96.13%

Table I: Accuracy on MARG Zones

Next we investigated how this model labels zones from
an unseen layout, that is to say how does this model perform
when it has to predict the labels for a zone that is coming
form a layout that it has never seen before during training.
For this purpose, we used leave-one-layout approach like [10]
and trained the model on all layouts except one, and that one

was only used for testing. No dropout was used in this case.
Table II summarizes our results.

Test Layout Accuracy%
type a 95.9
type b 95.2
type c 95.8
type d 96.3
type e 94.9
type f 97.4
type g 95.6
type h 95.0

type other 92.3
Overall Acc. 95.4

Table II: Leave one layout test.

van Beusekom [10] reported 94.8% accuracy on leave-one-
layout test. We are assuming that their results are averaged
over all types, so it can be seen that with our approach we get
95.38% accuracy upon testing our trained model on an unseen
layout. [10] was using a model that was transferring labels
from one of the known layouts to an unseen layout on test
time. The text in the zones was not used for doing so, only the
graphical representation of the image was used. Comparison
with the known layouts determined that from which of the
known layouts the labels had to be transferred. Obviously the
test layout was not in their model’s knowledge at test time but
still they compared and assigned labels and still got a very
high accuracy number. On the other hand our model is not
transferring the labels from some known layout directly to the
test image but instead utilizing the knowledge gained from
the text of the training images and the relative positions of the
zones. Hence we conclude that our model generalizes better to
unseen layouts as well. It is to be noted that here that we have
not taken into account any errors that occur due to the OCR
and therefore its consequences have not been investigated for
this work.

Table III and Table IV summarize comparisons on the two
tests that we performed. Since we have only performed test
on recognizing zones in MARG, so we compare with those
works that have used MARG for the same purpose.

Method Accuracy%
Rangoni et al. [6] 97.5%

Our model 96.2%

Table III: Comparison of Accuracy with random split on
MARG

It can be seen that our accuracy falls short of [6] when
we train and test on MARG with random splits. Also [6] has
averaged results on 10 different random splits to minimize
variability. Although our method performs better than [10] on
unseen layouts.



Method Accuracy%
Beusekom et al. [10] 94.8%

Our model 95.4%

Table IV: Overall Accuracy on ”leave one layout” on MARG

V. CONCLUSIONS AND FUTURE DIRECTIONS

We have presented an approach that can perform logical
layout analysis on front pages of scientific papers but it can
easily be scaled to do the job on document images from a wide
range of classes. This method performs well even on unseen
layouts because we take text and normalized positions of all
words in that text as input to the network for predicting the
labels of their zones. Although it performs slightly poor on
random splits as compared to some other known techniques
but it is much lighter in weight as compared to most of those
models. Accuracy rates of up to 96.21% were achieved with
random split and up to 95.38% on unseen layouts. For this
work, we assumed that the zone corners were already available
to us, so we used the ground truth zone corners. For our future
work, we intend to completely automate this process into a
single system that predicts the corners of the text blocks, runs
this model on those zones and predicts the labels for each of
them. Moreover we would like to demonstrate our results on
bigger datasets with more types of zones to label.

REFERENCES

[1] M. Aiello et al. “Document understanding for a broad
class of documents”. In: International Journal on Doc-
ument Analysis and Recognition 5.1 (2002), pp. 1–16.

[2] S. Hochreiter and J. Schmidhuber. “Long short-term
memory”. In: Neural computation 9.8 (1997), pp. 1735–
1780.

[3] D. Kingma and J. Ba. “Adam: A method for stochas-
tic optimization”. In: arXiv preprint arXiv:1412.6980
(2014).

[4] R. Marc. Understanding Structured Documents with a
Strong Layout. 2017.

[5] J. Pennington, R. Socher, and C. Manning. “Glove:
Global vectors for word representation”. In: Proceed-
ings of the 2014 conference on empirical methods in
natural language processing (EMNLP). 2014, pp. 1532–
1543.

[6] Y. Rangoni, A. Belaı̈d, and S. Vajda. “Labelling log-
ical structures of document images using a dynamic
perceptive neural network”. In: International Journal
on Document Analysis and Recognition 15.1 (2012),
pp. 45–55.

[7] F. Shafait et al. “Structural mixtures for statistical
layout analysis”. In: Document Analysis Systems, 2008.
DAS’08. The Eighth IAPR International Workshop on.
IEEE. 2008, pp. 415–422.

[8] G. Thoma. “Ground truth data for document image anal-
ysis”. In: Symposium on document image understanding
and technology (SDIUT). 2003, pp. 199–205.

[9] L. Todoran et al. “Logical structure detection for hetero-
geneous document classes”. In: Document Recognition
and Retrieval VIII. Vol. 4307. International Society for
Optics and Photonics. 2000, pp. 99–111.

[10] J. Van Beusekom et al. “Example-based logical labeling
of document title page images”. In: Document Analysis
and Recognition, 2007. ICDAR 2007. Ninth Interna-
tional Conference on. Vol. 2. IEEE. 2007, pp. 919–923.


