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Abstract—Ink mismatch detection provides important clues to
forensic document examiners by identifying whether a particular
handwritten note was written with a specific pen, or to show that
some part (e.g. signature) of a note is written with a different
ink as compared to the rest of the note. In this paper, we
show that a hyperspectral image (HSI) of handwritten notes can
discriminate between inks that are visually similar in appearance.
For this purpose, we develop the first ever hyperspectral image
database1 of handwritten notes in various blue and black inks,
comprising a total of 70 hyperspectral images each in 33 bands
of the visible spectrum. In an unsupervised clustering scheme,
the spectral responses of inks fall into separate clusters to allow
segmentation of two different inks in a questioned document.
The same method fails to segment inks correctly when applied
to RGB scans of these documents, since the inks are very hard
to distinguish in the visible spectral range. HSI overcomes the
shortcomings of RGB and allows better discrimination between
inks. We further evaluate which subset of bands from HSI is most
useful for the purpose of ink mismatch detection. We hope that
these findings will stimulate the use of HSI in document analysis
research, especially for questioned document examination.

I. INTRODUCTION

Natural materials absorb, transmit and reflect incident light
in a particular manner. This property of a material which gives
its due color, is often termed as its spectral response. Human
eye is sensitive to light in the visible range and is able to well
distinguish between different material colors [1]. However,
humans are metameric to certain colors, i.e. they are unable to
distinguish between two very close colors however, they are
different in terms of their spectral information.

Analysis of inks is of critical importance to questioned
document examination. The outcome of ink analysis poten-
tially leads to determination of forgery, fraud, backdating and
ink age. One of the most important tasks is to discriminate
between different inks. There are two main approaches to
distinguish inks, destructive and non-destructive examination.
Chemical analysis such as Thin Layer Chromatography (TLC)
[2] has been used to separate constituents of a mixture of inks.
The separation of inks is achieved via capillary action. There
are a few drawbacks to this approach. First, the examination
is destructive, time consuming and sensitive to temperature.
Second, the test is essentially qualitative and various measures
need to be taken to quantify the results.

Instead, a non-destructive examination technique such as
one proposed with spectral imaging has more potential. Hy-
perspectral imaging has recently emerged as an efficient non-
destructive tool for detection, enhancement [3], comparison

1UWA Writing Ink Hyperspectral Image Database
http://www.csse.uwa.edu.au/%7Eajmal/databases.html

and identification of forensic traces [4]. Such systems are
critical for forensic document examiners in differentiating writ-
ing inks. However, the task is laborious and time consuming
because the examiner needs to manually observe the document
under each wavelength of light and make decisions based
on qualitative analysis. The number of different wavelengths
to observe could range from a few to hundreds, depending
on the spectral resolution of the imaging system. Hence,
automatic ink analysis can play a key role in supporting
efficient questioned document examination.

Brauns et al. [5] developed a hyperspectral imaging system
to detect forgery in potentially fraudulent documents in a non-
destructive manner. Their imaging system was based on an
interferometer which relies on moving parts for frequency
tuning and therefore slows the acquisition process. Their work
serves as a proof of concept for the identification of writing
inks. Qualitative results on a small sample dataset showed that
the ink spectra can be separated into different classes in an
unsupervised manner. On the contrary, our system is based
on an electronically tunable filter which is fast, accurate and
has no moving parts. Moreover, we quantitatively analyze the
problem of ink mismatch detection.

A more sophisticated hyperspectral imaging system was
developed at the National Archives of Netherlands for the
analysis of historical documents in archives and libraries [6].
The system provided high spatial and spectral resolution from
near-UV through visible to near IR range. The only limitation
of the system was its extremely slow acquisition time (about
15 minutes) [7]. Contrary to that, our proposed system captures
hyperspectral images in only a fraction of that time.

In this paper, we present an efficient hyperspectral imaging
system for writing inks mismatch analysis. Our work is based
on the assumption that same inks exhibit similar spectral
responses whereas different inks show dissimilarity in their
spectra. We assume that the spectral responses of inks are
independent of the writing styles of different subjects. Thus,
unlike works that identify hand writings by the texture [8]
or ink-deposition traces [9], our work solely focuses on the
spectral responses of inks for writing ink discrimination.

II. WRITING INK HYPERSPECTRAL IMAGE DATABASE

A. Acquisition Setup

Unlike, flatbed document scanners that operate in a line
scan manner, our setup is a camera-captured imaging system.
The system consists of a monochrome machine vision camera
with a native resolution of 752 × 480 pixels. In front of the
camera is a focusing lens (1:1.4/16mm) followed by a Liquid
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Fig. 1. Hyperspectral images of writing inks. In each line, the subject writes the same sentence with a different ink inside a rectangle. The images λ1, λ2, ..., λP

represent the bands of the hyperspectral image. Observe how different inks exhibit variation of response in different bands.

Crystal Tunable Filter (LCTF) which is tunable in the range
of 400-720 nm. The average tuning time of the filter is 50
ms. The filter bandwidth, measured in terms of the Full Width
at Half Maximum (FWHM) is 7 to 20nm which varies with
the center wavelength. This results in sufficiently narrow-band
images. The scene is illuminated by halogen lamps on both
sides of the target. For spectral response calibration, the white
patch of a color checker was utilized as a reference.

The target is captured in the visible range (400-720nm at
steps of 10 nm) that results in a 33 band hyperspectral image.
It takes less than 5 seconds to sequentially capture 33 bands
of a hyperspectral image. The only downside of the system
is the significantly low filter transmission, and camera sensor
sensitivity at shorter wavelength, which are compensated by
an automatic exposure pre-calibration. Moreover, in a camera
based imaging system, the illumination is non-uniformly dis-
tributed over the target.

We also collected RGB scanned images at resolutions of
150 and 300 dpi using a flatbed scanner. These RGB images
provided baseline information for comparison with HSI. For
a fair comparison between RGB and HSI, it is important that
their spatial resolutions are similar so that any differences can
be attributed to the spectral dimension. This is the reason for
selecting low resolution in RGB scans. One advantage of a
flatbed scanning system is that the illumination is uniformly
distributed over the imaging surface.

All efforts were made to avoid prolonged exposure to
ambient/daylight by keeping the samples under cover in dark.
This is because different inks are likely to undergo a transfor-
mation in their spectral properties due to chemical reactions
induced by light. Such an occurrence is, although, favorable
in distinguishing two different inks, however, it is somewhat
destructive in nature and would bias our analysis. Moreover,
all samples were simultaneously collected from the subjects
so that their effective age is the same.

B. Database Specifications

The hyperspectral ink database has a total of 70 hyper-
spectral images of a hand-written note in 10 different inks by
7 subjects. All subjects were instructed to write the sentence,

‘The quick brown fox jumps over the lazy dog’, once in each
ink on a white paper. The pens included 5 varieties of blue
ink and 5 varieties of blank ink. It was ensured that the pens
came from different manufacturers while the inks still appeared
visually similar. Fig. 1 shows hyperspectral images of 5 blue
and 5 black inks of the same subject. The corresponding RGB
images are also shown on the outer sides.

III. UNSUPERVISED CLUSTERING OF INK PIXELS

Consider a hyperspectral image I ∈ R
M×N×P , where

M,N are the number of pixels in each spatial dimension and
P is the number of bands in the spectral dimension (P = 33).
There are two main tasks in ink clustering from a hyper-
spectral image. The first objective is to compute an M × N
binary mask which associates each pixel to the foreground
or background. The foreground represents the ink pixels and
the background represents the blank areas of the page. This
foreground/background segmentation is achieved using image
thresholding. The second objective is to subsequently establish
the class membership of each foreground pixel with ink K.
This is achieved using unsupervised clustering of spectral
responses.

A. Ink Pixels Segmentation

In the first step, the handwritten text requires to be
segmented from the blank paper area. The task can be ac-
complished via image thresholding. However, global image
thresholding methods, such as the Otsu’s [10] are not sufficient
because of the illumination variation over the document, due to
camera based imaging. The non-uniform illumination pattern
can be observed in Fig. 1. We therefore resort to local threshold
based binarization method such as Sauvola’s with an efficient
integral image based implementation [11]. The thresholding
is applied to a single selected channel of the hyperspectral
image (640 nm). For thresholding RGB images, we use Otsu’s
method which is sufficient given there is no illumination
variation in the scanned images.

B. Clustering of Ink Pixels

Data clustering is a useful technique to group similar
data items in an unsupervised manner [12]. Our data matrix
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X = {x1, x2, x3, ..., xn} ∈ R
n×p is the matrix of n spectral

response vectors x ∈ R
p of the foreground pixels of image

I. To reduce the effect of spatially non-uniform illumination,
we normalize each spectral response by dividing it with its
2-norm x̂n = xn/||xn||. Our objective is to ascertain the
label y = 1, 2, ..., k ∈ Z+

n of each pixel. K-means is a
partitional clustering algorithm which divides the n samples
into k ≤ n groups. It minimizes the squared error between a
cluster centroid and its members via the following criterion

argmin
C

k∑

i=1

∑

x̂j∈Ci

||x̂j − μi||2, (1)

where x̂j is the jth spectral response sample in the ith cluster
Ci. ||.|| is the squared error between cluster members x̂j and
its centroid μi. The number of clusters is k which relates
to the number of mixed inks. As the number of mixed inks
is unknown, k can theoretically lie in the range [1,∞]. For
the sake of this analysis, we fix k = 2, i.e., we assume
that there are two inks in the image. An implication of this
assumption could be that an image with more than two inks
would still be grouped into two clusters. At such instances,
manual intervention of the document examiner who selects
sufficiently smaller areas of interest could result in correct
segmentation of the inks. On the other hand, presence of a
single ink can be indicated by formation of mixed clusters,
providing no definite segmentation.

IV. EXPERIMENTS AND RESULTS

A. Experimental Setup

We produce mixed writing ink images from single ink notes
by joining equally sized image portions from two inks written
by the same subject. This makes roughly same proportion of
the two inks under question. The blue and black ink samples
are separately dealt with in all experiments. This is because it
is very unlikely to use such analysis to distinguish blue and
black inks, because they can be easily distinguished by visual
examination. We also choose not to mix inks among different
subjects as it is likely to least affect the results of our analysis.
The reason is that we disregard the spatial variation induced by
different handwriting styles and only make use of the spectral
responses. In our analysis, 5 different inks, taken 2 at a time
results in 10 ink combinations, for blue and black color each.
In the following experiments, Cij denotes the combination of
ink i with ink j.

B. Evaluation Metric

We assess the segmentation accuracy in terms of inter-
section/union metric, which measures the number of correctly
labeled pixels of an ink divided by the number of pixels labeled
with that ink in either the ground truth labeling or the predicted
labeling [13]. Synonymously, the accuracy is given as

Accuracy =
True Positives

True Positives + False Positives + False Negatives

The segmentation accuracy is averaged over seven samples
for each ink combination Cij . It is important to note that
according to this evaluation metric, the accuracy of a random

guess (in a two class problem) will be 1/3. This is different
to common classification accuracy metrics where the accuracy
of a random guess is 1/2. This is because our chosen metric
additionally penalizes false negatives which is favorable to
observe in a segmentation problem.

C. Experiments and Analysis of Results

We begin with analyzing the effect of different spatial
resolutions on segmentation performance in RGB images.
Fig. 2 shows the average segmentation accuracy at different
resolutions for all ink combinations. We observe the relation-
ship between the image resolution and accuracy. For most
of the blue ink combinations, the choice of resolution is
300 dpi. A resolution of 150 dpi seems to be too small
but gives an accuracy comparable to 300 dpi in a few ink
combinations. Surprisingly, for black ink combinations, no
conclusive evidence is available to support any resolution as
the accuracy is within the range of (0.3,0.4). This means
that RGB does not carry enough information to differentiate
between different black inks and the output is close to a
random guess. As a final choice, we resort to use the 300
dpi RGB images for further analysis.
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Fig. 2. The effect of spatial resolution on ink segmentation from RGB images.

We now observe how hyperspectral information can be
beneficial in discrimination of inks. We compare the segmen-
tation performance of HSI with RGB in Fig. 3. As expected,
HSI significantly improves over RGB in most of the ink
combinations. This results in most accurate clustering of ink
combinations C12, C14, C12, C25, C35 and C45. In case of
black inks, ink 1 is highly distinguished from all other inks
resulting in the most accurate clustering for all combinations
C1j . However, it can be seen that for a few combinations,
HSI does not show a remarkable improvement. Instead, in
some cases, it is less accurate compared to RGB. These results
encourage us to further look at HSI in detail in order to take
advantage of the most informative bands.
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Fig. 3. Comparison of RGB and HSI image based segmentation accuracy.
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Fig. 4. Spectra of the blue and black inks under analysis. Note that at some
ranges the ink spectra are more distinguished than others.

Fig. 4 shows the average normalized spectra of all blue
and black inks, respectively. It was achieved by computing
the average of the spectral responses of each ink over all
samples in the database. It can be observed that the spec-
tra of the inks are distinguished at different ranges in the
visible spectrum. In order to evaluate the contribution of
sub-ranges, we spectrally divide the hyperspectral data and
perform separate segmentation experiments. We empirically
divide the visible spectrum into three ranges and name them as
low-visible (400nm-500nm), mid-visible (510nm-590nm) and
high-visible range (600nm-720nm), respectively. These ranges
roughly correspond to the blue, green and red and have been
empirically selected because no clear sub-categorization of the
visible spectrum, other than this, is defined in the literature. A
close analysis of variability of the ink spectra in these ranges
reveals that most of the differences are present in the high-
visible range, followed by mid-visible and low-visible ranges.

Fig. 5 shows the results of separate experiments in low-
visible, mid-visible and high-visible range. Note that for most
of the ink combinations, the high-visible range is most ac-
curate, followed by the mid-visible and the low-visible range
respectively. Observe that the black ink combinations C34, C35

and C45 are more distinguished in the low-visible range. This
can be verified from the ink spectra in Fig. 4. The black inks
3, 4 and 5 are almost similar in the high-visible range, while
they show a difference in the low-visible range.
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Fig. 5. HSI wavelength range analysis. Observe that the high-VIS range
performs better than the mid-VIS and low-VIS ranges.

After clustering of inks in an unsupervised manner using
all bands of the HSI, we now improvise our approach by a
supervised feature selection. Feature selection is an effective
tool to select a small number of variables that optimize certain
performance criteria [14]. To this point, we do not have any
knowledge of the capability of individual bands of the HSI.
Now our aim is to seek a subset of bands which are sufficient
to discriminate between different inks. We choose a forward
feature selection approach to select a subset of bands. A leave
one ink combination out strategy is adopted, in a 10 fold

TABLE I. RESULTS OF FEATURE SELECTION IN LEAVE-1-OUT CROSS

VALIDATION. ALL BANDS ARE PRESENTED IN DECREASING ORDER OF

IMPORTANCE.

Fold
Ink

Blue Black
1 720,550,490,520,560 710,440,520,700,550
2 720,550,490,520,560 700,530,550,460,720,520,450
3 710,560,490,550,520 700,530,550,720,440,520,710
4 720,550,490,520 700,530,520,460,720,440
5 710,550,560,500,720,480,520 700,530,520,460,720,440,500
6 720,500,560,550,520 700,520,530,460,720,550
7 720,490,550 700,530,550,720,450,520,460
8 720,550,490,520,560 720,520,450,690,530,550
9 720,550,490,520,560 720,520,450
10 720,550,490,520,560 700,530,550,720,450,520,460

cross validation to avoid bias of a particular ink combination
in the selected features. In the first step of feature selection,
the performance of each individual band on the segmentation
of inks is computed. Then, starting with the best band, at
each following step, the remaining bands are added (with
replacement) one at a time and the best combination of bands
is selected. The process continues until adding another band
decreases accuracy from the previous step. The same process
is repeated in a 10 fold cross validation, each time, learning
features from 9 ink combinations and testing on the left out
ink combination.

Table I gives the selected bands after the feature selection
procedure. It can be seen that the selected bands are fairly
consistent and stable. We first analyze results of blue ink. One
observation is that the 720nm band (which is in the high-visible
range) plays the most important role in distinguishing inks.
The second band (550nm) is generally selected from the mid-
visible range. The third band (490nm) is selected from the low-
visible range. Thus the first three bands are far apart, providing
complementary information. Thereafter, different bands are
selected from all ranges. We can correlate these findings with
the ink spectra in Fig. 4 and observe how all spectra are fairly
separated at these wavelengths. In case of black inks, again,
the most important band (700 nm) falls in the high-visible
range. The next two in the mid-visible range and then in the
low-visible range. In both blue and black inks, it is interesting
to note that rarely a bands is selected in the range 560-680nm,
which is the initial part of high-visible range. This indicates
that there is low discriminatory information in this sub-range.
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Fig. 6. Results of band selection and comparison with results using all bands.

We now compare the results of using all bands to that of
using only the selected bands as shown in Fig. 6. In this figure
for HSI-FS, the accuracy of each combination is based on the
features selected in Table I by leaving that ink combination out.
The feature selection shows its superiority in ink segmentation
for most of the ink combinations. Only for a few combinations,
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Original Image

Ground Truth

Result (RGB)

Result (HSI-All)

Result (HSI-FS)

Fig. 7. Example test images. We purposefully selected two hard cases so that the capability of RGB and HSI based segmentation is visually appreciable.

it shows worse performance. It is likely that the algorithm
discontinued at a local maxima and could not further explore
additional bands for improved accuracy.

The band selection gives an insight into how a customized
multispectral imaging device for writing ink analysis can be
made with a smaller number of bands. Bianco et al. [15]
developed a multispectral imaging device by combining an
imaging sensor with an automatic filter wheel. They em-
pirically selected six different filters (3 visible and 3 NIR)
for the prototype device. Such devices may benefit from the
findings of the proposed study in the selection of an optimal
combination of filters.

Finally, we qualitatively analyze some results on example
images of blue and black ink combinations. In Fig. 7, the
original images shown are a combination of two blue inks
(C34) and black inks (C45), respectively. We show RGB images
for better visual appearance. The ground truth images are
shown in pseudo-colors, where green represents the first ink
pixels and red represents the second ink pixels.

The clustering based on RGB images is unable to group
similar ink pixels into same clusters. Instead, a closer look
reveals that all the ink pixels are falsely grouped into one
cluster whereas most of the boundary pixels are grouped into
another cluster. This means that RGB is not sufficient to
discriminate inks.

On the other hand, segmentation based on HSI is much
more effective compared to RGB. Although, it is not a perfect
segmentation result, but, compared to RGB images, it is more
reasonable. Finally, we see how the segmentation accuracy
improves by using only the selected features in HSI-FS. The
selected features exhibit a clear advantage over using all the
features. It can be seen that the majority of the ink pixels are
correctly grouped according to ground truth segmentation.

V. CONCLUSION

Hyperspectral imaging is of critical value in supporting ink
examination. We collected a database of hyperspectral images
of different blue and black writing inks. We analyzed and
compared the performance of RGB images to HSI images.
We also evaluated how a subset of useful bands from hyper-
spectral images can be effective in ink segmentation. Despite
the limitations of our hardware in terms of signal to noise
ratio, encouraging results of ink segmentation were achieved.

This proves the reliability of hyperspectral information in
questioned ink analysis.
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