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Abstract. Hyperspectral imaging provides measurement of a scene in
contiguous bands across the electromagnetic spectrum. It is an effec-
tive sensing technology having vast applications in agriculture, archeol-
ogy, surveillance, medicine and forensics. Traditional document imaging
has been centered around monochromatic or trichromatic (RGB) sens-
ing often through a scanning device. Cameras have emerged in the last
decade as an alternative to scanners for capturing document images.
However, the focus has remained on mono-/tri-chromatic imaging. In this
paper, we explore the new paradigm of hyperspectral imaging for docu-
ment capture. We outline and discuss the key components of a hyperspec-
tral document imaging system, which offers new challenges and perspec-
tives. We discuss the issues of filter transmittance and spatial/spectral
non-uniformity of the illumination and propose possible solutions via
pre and post processing. As a sample application, the proposed imag-
ing system is applied to the task of writing ink mismatch detection in
documents on a newly collected database (UWA Writing Ink Hyperspec-
tral Image Database http://www.csse.uwa.edu.au/%7Eajmal/databases.
html). The results demonstrate the strength of hyperspectral imaging in
capturing minute differences in spectra of different inks that are very
hard to distinguish using traditional RGB imaging.

Keywords: Hyperspectral document analysis · Forensic document exam-
ination · Ink mismatch detection

1 Introduction

Image scanning devices are currently the major source of creating digitized ver-
sions of documents both black and white as well as color. Traditional scanners
are fairly limited with regards to the color information that they can capture
as their imaging systems are designed to replicate the trichromatic RGB human
visual system. In many situations high fidelity spectral information can be can be
very useful, for example where it is required to distinguish between two similar
inks [1] or determine the age of a writing or the document itself.
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Natural materials exhibit a characteristic spectral response to incident light.
The spectral response of a material is responsible for its specific color. It is a sig-
nature property which can be used for material identification. Spectral imaging
is an effective technique for measurement of the spectra of objects in the real
world. A hyperspectral (HS) image of a scene is a series of contiguous narrow-
band images in the electro-magnetic spectrum. In contrast to a three channel
RGB image, an HS image captures finer spectral information of a scene.

Satellite based multispectral imaging sensors have long been used for astro-
nomical and remote sensing applications. Due to the high cost and complexity
of these multispectral imaging sensors, various techniques have been proposed
to utilize conventional imaging systems combined with a few off the shelf opti-
cal devices for multispectral imaging. In this paper, we discuss new challenges
in the development of hyperspectral document imaging system. Various spec-
tral imaging techniques have been developed over the years. An overview about
different technologies for capturing hyperspectral images is given in Sect. 2. We
focus on the HS imaging specific issues of spatial/spectral illumination variation
and filter transmission variation and propose possible solutions to reduce these
artifacts in Sect. 3. We apply the proposed HS imaging system to the task of
ink mismatch detection (Sect. 4) on a newly developed writing ink hyperspectral
image database. The paper is concluded in Sect. 5.

2 Overview of Hyperspectral Imaging

Strictly speaking, an RGB image is a three channel spectral image. An image
acquired at more than three specific wavelengths in a band is referred to as a
Multispectral Image. Generally, multispectral imaging sensors acquire more than
three spectral bands. An image having finer spectral resolution or higher number
of bands is regarded as a Hyperspectral Image. There is no clear demarcation
with regards to the number of spectral bands/resolution between multispectral
and hyperspectral images. However, hyperspectral sensors may acquire a few
dozen to several hundred spectral measurements per scene point. For example,
the AVIRIS (Airborne Visible/Infrared Imaging Spectrometer) of NASA has 224
bands in 400–2500 nm range [2].

A hyperspectral image has three dimensions: two spatial dimensions (x, y)
and one spectral dimension (λ) as shown in Fig. 1. A hyperspectral image can be
presented in the form of a Hyperspectral Cube. The basic concept for capturing
hyperspectral images is to filter incoming light by the use of bandpass filters
or dispersion optics. In the following we present a brief overview of different
methods/technologies used for hyperspectral imaging, categorized based on the
underlying optical phenomenon of bandpass filtering or chromatic dispersion.
The overview presented here is limited to the hyperspectral imaging systems
used in ground-based computer vision applications. Therefore, high cost and
complex sensors for remote sensing employed in astronomy and other geo-spatial
applications are not considered.
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Fig. 1. A hyperspectral image is illustrated as a series of images along the spectral
dimension.

2.1 Bandpass Filtering

In filter based approach, the objective is to allow light in a specific wavelength
range to pass through the filter and reach the imaging sensor. This phenomenon
is illustrated in Fig. 2. This can be achieved by using optical devices generally
named bandpass filters or simply filters. The filters can be categorized into two
types depending on the filter operating mechanism. The first type is the tunable
filter or specifically the electrically tunable filter. The pass-band of such filters
can be electronically tuned at a very high speed which allows for measurement
of hyperspectral data in a wide range of wavelengths. The second type is the
non-tunable filters. Such filters have a fixed pass-band of frequencies and are
not recommended for use in time constrained applications. These filters require
physical replacement either manually, or mechanically by a filter wheel. However,
they are easy to use in relatively simple and unconstrained applications.

Non-Tunable Filters. A common approach to acquire multispectral images is
by sequential replacement of bandpass filters between a scene and the imaging
sensor. The process of filter replacement can be mechanized by using a wheel of
filters. Such filters are useful where time factor is not involved and the goal is to
image a static scene. Kise et al. [3] developed a three band multispectral imaging
system by using interchangeable filter design; two in the visible range (400–
700 nm) and one in the near infrared range (700–1000 nm). The interchangeable
filters allowed for selection of three bands. The prototype was applied to the
task of poultry contamination detection.

Tunable Filters. Electronically tunable filters come in different base technolo-
gies. One of the most common is the Liquid Crystal Tunable Filter (LCTF). The
LCTF is characterized by its low cost, high throughput and slow tuning time.
On the other hand, the Acousto-Optical Tunable Filter is known for high cost,
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Fig. 2. In bandpass filtering, the filter allows only a specific wavelength of light to pass
through, resulting in a single projection of the scene at a particular frequency.

low throughput, and faster tuning time. For a detailed description of the compo-
sition and operating principles of the tunable filters, the readers are encouraged
to read [4,5].

Fiorentin et al. [6] developed a hyperspectral imaging system using a com-
bination of CCD camera and LCTF in the visible range with a resolution of
5 nm. The device was used in the analysis of accelerated aging of printing color
inks. The system is also applicable of monitoring the variation (especially fad-
ing) of color in artworks with the passage of time. The idea can be extended to
other materials that may exhibit changes due to exposure to artificial or daylight
illumination, such as document paper and ink.

Comelli et al. [7] developed a portable UV-fluorescence hyperspectral imag-
ing system to analyze painted surfaces. The imaging setup comprises a UV-
florescence source, an LCTF and a low noise CCD sensor. A total of 33 spectral
images in the range (400–720 nm) in 10 nm steps were captured. The accuracy of
the system was determined by comparison with the fluorescence spectra of three
commercially available fluorescent samples measured with a bench-top spectro-
fluorometer. The system was tested on a 15th century renaissance painting to
reveal latent information related to the pigments used for finishing decorations
in painting at various times.

2.2 Chromatic Dispersion

In dispersion based filtering, the objective is to decompose an incoming ray
of light into its spectral constituent as shown in Fig. 3. This can be achieved
by optical devices like diffraction gratings, prisms, grisms (grating and prism
combined) and interferometers. We further outline chromatic dispersion based
on refraction or interferometric optics.
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Fig. 3. In chromatic dispersion, the dispersion optics disperses the incoming light into
its constituents which are projected onto the imaging plane.

Refraction Optics. Refraction is an intrinsic property of glass-like materials
such as prisms. A prism separates the incoming light ray into its constituent
colors. Du et al. [8] proposed a prism-based multispectral imaging system in
the visible and infrared bands. The system used an occlusion mask, a triangular
prism and a monochromatic camera to capture multispectral image of a scene.
Multispectral images were captured at high spectral resolution while trading off
the spatial resolution. The use of occlusion mask also reduced the amount of
light available to the camera and thus decreased the signal to noise ratio (SNR).
The prototype was evaluated for the tasks of human skin detection and physical
material discrimination.

Gorman et al. [9] developed an Image Replicating Imaging Spectrometer
(IRIS) using an arrangement of a Birefringent Spectral De-multiplexer (BSD)
and off-the-shelf compound lenses to disperse the incoming light into its spectral
components. The system was able to acquire spectral images in a snapshot. It
could be configured to capture 8, 16 or 32 bands by increasing the number of
stages of the BSD. It has, however, a Field-of-View limited by the width of a
prism used in the BSD. A high spectral resolution is achieved by trading-off
spatial resolution since a 2D detector is used.

Interferometric Optics. The optics such as interferometers can also be used
as light dispersion devices by constructive and destructive interference. Burns
et al. [10] developed a seven-channel multispectral imaging device using 50 nm
bandwidth interference filters and a standard CCD camera. Mohan et al. pro-
posed the idea of Agile Spectral Imaging [11]. Using a diffraction grating to dis-
perse the incoming rays, a geometrical mask pattern was used to allow specific
wavelengths to pass through and reach the sensor.

Descour et al. [12] presented a Computed Tomography Imaging Spectrome-
ter (CTIS) design using three sinusoidal phase gratings to disperse light into
multiple directions and diffraction orders. Assuming the dispersed images to be
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two dimensional projections of three dimensional multispectral cube, the mul-
tispectral cube is reconstructed using maximum-likelihood expectation maxi-
mization algorithm assuming Poisson likelihood law. The prototype works in
the visible range (470–770 nm) and is able to reconstruct multispectral images
of a simple target.

3 Hyperspectral Document Imaging

By carefully analyzing different technologies/methods for capturing hyperspec-
tral images, we chose the tunable filter due to its easy integration with off-the-
shelf machine vision cameras and programmatic control over the hardware (e.g.
exposure time, spectral resolution, etc.). This section provides an overview of our
hyperspectral document imaging setup and presents our approach for tackling
various hyperspectral-imaging-specific challenges.

3.1 Acquisition Setup

Our system comprises of a monochrome machine vision CCD camera at a base
resolution of 752 × 480 pixels. A focusing lens (1:1.4/16 mm) lies in front of
the CCD camera. In order to capture images in discrete wavelength channels, a
Liquid Crystal Tunable Filter (LCTF) is placed in front of the lens as shown in
Fig. 4. The filter can tune to any wavelength in the visible range (400-720 nm)
with an average tuning time of 50 ms. The bandwidth of the filter varies with
the center wavelength, such that it is low at shorter wavelengths and high at
longer wavelengths as shown in Fig. 5. It is measured in terms of Full Width at
Half Maximum (FWHM) which ranges from 7 to 20 nm corresponding to 400
and 720 nm. Thus, the first few bands have very low SNR combined with the
filter transmission loss (see Fig. 5). To compensate for the low SNR images, the
document is illuminated by two halogen lamps.

To achieve sufficient fidelity in the spectral dimension, we capture hyper-
spectral images comprising 33 bands in the visible range (400–720 nm at steps of
10 nm). The target is captured in a sequential manner so that the total capture
time is the sum of acquisition and filter tuning time for each band (5 s, several
times faster than a commercial system [13]).

3.2 Compensation for Filter Transmittance

Typically, each band of a hyperspectral image is captured with a constant expo-
sure time. Since different spectral bands are captured sequentially in our imaging
setup, it is possible to vary exposure before each acquisition is triggered. Look-
ing at the filter response at different wavelengths in Fig. 5, it can be observed
that the amount of light transmitted is a function of the wavelength such that –
with some minor glitches – the longer the wavelength λ, the higher the transmit-
tance τ(λ). Extremely small values of τ(λ) for λ ∈ [400, 450] result in insufficient
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Fig. 4. An illustration of the proposed hyperspectral document image acquisition setup.
The controller triggers cycles of filter tuning/image acquisition at a high speed allowing
for efficient image capture.
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Fig. 5. Transmission functions of the LCTF at 10 nm wavelength step (left). Exposure
time as a function of wavelength (right). Observe that the filter transmission at shorter
wavelengths needs compensation.

energy captured by the imaging system in those bands corresponding to the
blue region of the spectrum (see Fig. 1). To compensate for this effect, we model
the exposure time te(λ) as an inverse function of the wavelength such that the
shorter the wavelength, the longer the exposure time:

te(λ) = α(τmax − τ(λ)) + t̄e (1)

where τmax is the maximum transmission of the filter at any wavelength (i.e.
transmission at λ = 700 nm for the filter used in this work – see Fig. 5), t̄e is the
corresponding exposure time, and α is a balancing coefficient. t̄e is computed as
the maximum possible exposure time for the band corresponding to τmax which
ensures no image saturation. In order to keep each band unsaturated, we keep α
to be small (α = 8 in this work) and experimentally find a suitable value for t̄e.
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3.3 Compensation for Non-Uniform Illumination Intensity

In hyperspectral document imaging, the use of a nearby illumination source
induces a scalar field over the target image. This means that there is a spatially
non-uniform variation in illumination. The result is that the pixels near the
center of the image will be brighter (have higher energy) as compared to the
pixels farther away towards the edges. This effect can be seen in Fig. 1. Let
p(x, y) be the spectral response at the image location (x, y). It can be reasonably
assumed here that the non-uniformity in illumination is only a function of pixel
coordinates (x, y) and does not depend on the wavelength λ. This assumption
will hold for each (x, y) as long as p(x, y) is not saturated. Hence, normalizing
the spectral response at each pixel to the unit vector:

p̂(x, y) =
p(x, y)

‖p(x, y)‖ (2)

will largely compensate for the effect of non-uniform illumination intensity.

3.4 Compensation for Illuminant’s Non-Uniform Spectral Power
Distribution

Assuming Lambertian surface reflectance, the hyperspectral image of a document
can be modeled as follows. The formation of an N channel hyperspectral image
I(x, y, λ), λ = 1, 2, ..., N of a document is mainly dependent on four factors:
the illuminant spectral power distribution L(λ), the scene spectral reflectance
S(x, y, λ), the filter transmittance τ(λ), and the sensor spectral sensitivity C(λ).
Hence, image intensity of a particular spectral band λ can be calculated as

I(x, y, λ) =
∫ λmax

λmin

L(λ)S(x, y, λ)τ(λ)C(λ)dλ (3)

where λmin and λmax define the bandwidth of the spectral band λ.
Most of the illumination sources do not have a flat power distribution across

different wavelengths (see Fig. 6 for spectral power distribution of some common
illuminants). To compensate for non-uniform spectral power distribution of the
illuminant, color constancy methods are applied. Van de Weijer et al. [14] pro-
posed a unified formulation for different color constancy algorithms. Varying the
parameters of the following formulation, leads to estimation of the illuminant
spectra

L̂(λ : n, p, σ) =
1
κ

(∫
y

∫
x

|∇nIσ(x, y)|pdx dy

)
, (4)

where n is the order of differential, p is the Minkowski norm and σ is the scale
of the Gaussian filter. Iσ(x, y) = I(x, y) ∗ G(x, y : σ) is the Gaussian filtered
image. κ is a constant, chosen such that the estimated illuminant spectra has a
unit �2-norm. The illumination corrected hyperspectral image is obtained by a
simplified linear transformation

Î(x, y, λ) = MI(x, y, λ), M ∈ R
N×N , (5)
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Fig. 6. Spectral power distributions of various illuminant sources. Observe that the
low illuminant power at shorter wavelengths needs compensation.

where M is a diagonal matrix such that

Mi,j =

{
1/L(λi) if i = j

0 otherwise
(6)

Color constancy can be achieved by making assumptions on the first or higher
order statistics of the image. There is no strict rule as to which assumption is
the best. Rather it mainly depends which particular assumption suits the given
image content. Following is a brief overview of assumptions made by different
color constancy algorithms.
Gray World (GW) algorithm [15] assumes that the average image spectra is
gray, so that the illuminant spectra can be estimated as the deviation from the
gray of average.
Gray Edge (GE) algorithm [14] assumes that the mean spectra of the edges
is gray so that the illuminant spectra can be estimated as the shift from gray of
the mean of the edges.
White Point algorithm [16] assumes the presence of a white patch in the scene
such that the maximum value in each channel is the reflection of the illuminant
from that white patch.
Shades-of-Gray (SoG) algorithm [17] is based on the assumption that the
�p-norm of a scene is a shade of gray.
general Gray World (gGW) algorithm [15] is based on the assumption that
the �p-norm of a scene after smoothing is gray.

Based on the assumptions behind each of these algorithms, the White Point
algorithm appears to be the most appropriate for estimating illuminant spectral
power distribution from document images. Since documents are often printed on
white paper, the assumption made by the WP algorithm about the presence of
a white patch in the image would be mostly satisfied.
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4 Application to Ink Mismatch Detection

As a sample application of hyperspectral imaging in document analysis, we chose
ink mismatch detection (please refer to [1] for more details). In this paper, we
specifically address the challenges associated with hyperspectral imaging of doc-
uments. The main focus is on compensating the effects of spatial and spectral
non-uniformity of illumination. We perform additional experiments to observe
the effects of illumination normalization using proposed compensation tech-
niques. Using the imaging setup described in Sect. 3.1, a database consisting
of 70 hyperspectral images of a hand-written note in 10 different inks by 7 sub-
jects was collected. All subjects were instructed to write the same sentence, once
in each ink on a white paper. The pens included 5 varieties of blue ink and 5
varieties of blank ink pens. It was ensured that the pens came from different
manufacturers while the inks still appeared visually similar. Then, we produced
mixed writing ink images from single ink notes by joining equally sized image
portions from two inks written by the same subject. This made roughly the same
proportion of the two inks under question.

The pre-processed mixed-ink images were first binarized using an adaptive
thresholding method [18] and then fed to the k-means clustering algorithm with
a fixed value of k = 2. Finally, ink mismatch detection accuracy was computed
as

Accuracy =
True Positives

True Positives + False Positives + False Negatives

The mismatch detection accuracy is averaged over seven samples for each
ink combination Cij . It is important to note that according to this evaluation
metric, the accuracy of a random guess (in a two class problem) will be 1/3. This
is different to common classification accuracy metrics where the accuracy of a
random guess is 1/2. This is because our chosen metric additionally penalizes
false negatives which is critical to observe in a our problem.

As discussed in Sect. 3.3, a spatially varying illumination is not desirable and
modulates the spectral responses of the image pixels. In order to undo the effect
of a non-uniform illumination, the images are normalized using Eq. 2. Figure 7
presents the mismatch detection accuracies on raw and normalized hyperspectral
images. The improvement in correctly segmenting mismatching inks is highly
evident for a majority of ink combinations of the blue and black ink, respectively.

In Sect. 3.2, an adaptive exposure scheme was proposed to compensate for the
varying filter transmittance. The adaptive exposure results in a higher SNR for
bands with a low transmittance. We compare the use of adaptive exposure with
constant exposure for hyperspectral ink mismatch detection. It can be noticed
from Fig. 8 that the use of adaptive exposure either slightly improves the accu-
racy or remains close to the performance achieved by constant exposure.

We now evaluate the ink mismatch detection accuracy after compensating
for illuminant spectral non-uniformity (color constancy) to that of no compen-
sation as outlined in Sect. 3.4. It can be seen in Fig. 9 that there is only a slight
improvement for some of the ink combinations after using color constancy.
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Fig. 7. Comparison of ink mismatch detection accuracies between raw and normalized
(using Eq. 2) images. Note that the normalization significantly improves accuracy.
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Fig. 8. Comparison of mismatch detection accuracies using constant or adaptive (using
Eq. 1) exposure. Observe that the adaptive exposure strategy results in a more accurate
discrimination between inks of the same color.
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The efficacy of the proposed hyperspectral document imaging system can be
visually appreciated by a qualitative analysis of the example images. Figure 10
shows two example images of blue and black inks. The images are made by
joining samples of ink 1 and ink 2 for both blue and black inks, separately.
The original images are shown in RGB for clarity. The ground truth images are
labeled in different colors to identify the constituent inks in the mixture.

Observe that the raw HS images are yellowish due to the strong illuminant
bias as well as low filter transmittance for the wavelengths in the blue spectrum
range. Besides, spatial non-uniformity of the illumination can be observed from
the center to the edges. The mismatch detection results on raw images indicate
that the clustering is biased by the illumination intensity, instead of the ink
color. After normalization of the raw HS images, it is evident that the effect of
illumination is highly depreciated. This results in an accurate mismatch detection
result that closely follows the ground truth.

We finally observe the effect of color constancy on ink mismatch detection.
Notice that the mismatch detection result is largely unaffected except for a few
noisy pixels which are misidentified as being from a different ink. One of the
clear benefits of color constancy is that it highly improves the visual appearance
of the images by removing the illumination bias.

etoNnettirwdnaHknIkcalBetoNnettirwdnaHknIeulB

Ground Truth Ink Map Ground Truth Ink Map

HS image (raw) HS image (raw)

Result (raw) Result (raw)

HS image (norm) HS image (norm)

Result (norm) Result (norm)

HS image (norm+cc) HS image (norm+cc)

Result (norm+cc) Result (norm+cc)

Fig. 10. An illustration of ink mismatch detection on a blue ink and a black ink
handwritten notes, acquired using adaptive exposure. The ground truth ink pixels are
labeled in pseudo colors (red: ink 1, green: ink 2). The spatially non-uniform illumina-
tion pattern can be observed in raw HS images, with high energy in the center and low
towards the edges. Normalization removes the illumination bias and greatly improves
segmentation accuracy. Color constancy improves the visualization of HS images, while
resulting in comparable accuracy.



162 Z. Khan et al.

5 Conclusion and Future Work

Hyperspectral imaging of documents has potentially numerous applications in
document analysis. The spatial non-uniformity of illuminant source was com-
pensated to a great extent by the proposed normalization strategy. The variable
filter transmission was compensated for by a linear adaptive exposure func-
tion. Further improvements could be expected by introducing non-linear adap-
tive exposure functions. We also explored color constancy for illuminant spectral
normalization which greatly improved the HS image visualization. More research
attention is required to the limitations of current hardware to address challenges
of illumination variation and variable filter transmission.
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