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Abstract—Long Short-Term Memory (LSTM) networks have
yielded excellent results on handwriting recognition. This paper
describes an application of bidirectional LSTM networks to the
problem of machine-printed Latin and Fraktur recognition. Latin
and Fraktur recognition differs significantly from handwriting
recognition in both the statistical properties of the data, as well
as in the required, much higher levels of accuracy. Applications of
LSTM networks to handwriting recognition use two-dimensional
recurrent networks, since the exact position and baseline of
handwritten characters is variable. In contrast, for printed OCR,
we used a one-dimensional recurrent network combined with
a novel algorithm for baseline and x-height normalization. A
number of databases were used for training and testing, including
the UW3 database, artificially generated and degraded Fraktur
text and scanned pages from a book digitization project. The
LSTM architecture achieved 0.6% character-level test-set error
on English text. When the artificially degraded Fraktur data
set is divided into training and test sets, the system achieves
an error rate of 1.64%. On specific books printed in Fraktur
(not part of the training set), the system achieves error rates of
0.15% (Fontane) and 1.47% (Ersch-Gruber). These recognition
accuracies were found without using any language modelling or
any other post-processing techniques.

I. INTRODUCTION

Approaches to printed OCR can be broadly divided into

segmented and unsegmented approaches. Many approaches

work by segmenting input lines into characters or character

candidates and then applying a classifier to the individual

character candidates; the output of this is often a recogni-
tion lattice, which represents segmentation and recognition

alternatives [1]. Another example of a segmentation-based

OCR system is the open source Tesseract system [2]. Hidden

Markov Models [3] are a common and successful example of

unsegmented recognition. They have been applied to OCR as

well [4].
Both kinds of systems are complex to develop and optimize.

Segmentation-based OCR systems require carefully designed

character segmentation methods, since segmentation errors

generally lead to errors in the output. In our experience, seg-

mentation errors are the limiting factor for the performance of

segmentation-based OCR systems. Segmentation-based OCR

systems also require careful estimation of segmentation and

classification costs; in particular, the fact that segments of

different length compete for being present on the best path

through the recognition lattice makes estimating costs diffi-

cult and may require heuristic tuning of the cost functions.

Segmentation-free techniques like Hidden Markov Models

(HMMs) applied to OCR [5], [6] avoid many of the difficulties

of segmentation-based OCR systems, but still require careful

choices of model structures, and face similar issues in heuristic

modifications of their cost functions to achieve overall good

performance.

Convolutional neural networks (another example of

segmentation-free technique) have been applied in the past

to handwriting recognition problems with some success [7].

However, in our experience and the experience of other

groups, they have not yielded performance competitive with

segmentation-based approaches for printed OCR. Likewise,

there has been no report of competitive performance of Re-

current Neural Networks (RNN) [8] on OCR tasks.

Recurrent Neural Networks have had somewhat of a re-

naissance due to the Long Short Term Memory (LSTM)

architecture [9], [10]. The LSTM architecture differs sig-

nificantly from the architecture of previous recurrent neural

networks [11], [12], [13] and appears to overcome many of

the limitations and problems of those earlier architectures.

Recurrent Neural networks are considered good at context-

aware processing and to recognize patterns occurring in time-

series [8]. However, traditional recurrent neural networks have

not shown competitive performance in large scale tasks like

OCR and speech recognition, perhaps due to the vanishing
gradient problem [14], [15]. The Long Short Term Mem-

ory [9] architecture was designed to overcome this problem.

It is a highly non-linear recurrent network with multiplicative

“gates” and additive feedback. Graves et al. [10] introduced

bidirectional LSTM architectures for accessing context in

both forward and backward directions. Both layers are then

connected to a single output layer. To avoid the requirement

of segmented training data, Graves et al. [16] used a forward

backward algorithm to align transcripts with the output of the

neural network.

For printed OCR, text lines come in many different sizes,

yet the relative position and scale of characters is an im-

portant feature for distinguishing characters in Latin script

and a variety of other scripts. Graves et al. [10] introduced

a normalization process to scale the handwritten text-lines

with varying writer speed and non-uniform skew. For printed

OCR, different kinds of normalization appear to be required

for good performance. Rashid et al. [17] divided the text-lines
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Fig. 1: Input/output from the LSTM-based OCR illustrating

capabilities and errors. Generally, LSTM-OCR copes well

with touching characters (a,b) and ligatures (e,f). Characters

or styles that are rare in the training set are more prone to

misclassification (c,e); this can be addressed with additional

training data. The insertion in (f) is an artefact of the simple

decoding process that turns the output of the neural network

into a string; it is rare and probably can be eliminated

with better decoding. Examples are taken from historical and

modern Google book scans and Ersch-Gruber, not included in

the training data.

into ascender, descender and middle regions. In this paper, we

follow a similar approach, but use shape models to make the

detection of these regions more accurate and robust.

The goal of this paper is to show that a simple application of

LSTM without language modelling yields very low error rates

compared to other standard systems and methods. In this paper,

we have presented the results of applying LSTM architecture

to printed English text and historical German Fraktur text for

the first time. This paper comprises a text line normalization

step, followed by a direct application of LSTM networks to

the normalized input. The paper presents evaluations on both

standard Latin and Fraktur data sets.

II. TEXT-LINE NORMALIZATION

Text line normalization is an essential step in applying 1D

LSTM networks to OCR, since 1D LSTM is not translationally

invariant along the vertical axis. For Latin scripts, absolute

position and scale along the vertical axis carries a significant

amount of information and is essential for distinguishing a

number of common characters. Taken together, these obser-

vations suggest that text line normalization combined with a

1D LSTM network could be a good choice for Latin script

recognition.

The normalization procedure for text line images is based

on a dictionary composed of connected component shapes and

associated baseline and x-height information. This dictionary

is pre-computed based on a large sample of text lines with

baselines and x-heights derived from alignments of the text

line images with textual ground-truth, together with informa-

tion about the relative position of Latin characters to the base-

line and x-height. Note that for some shapes (e.g., p/P, o/O),

the baseline and x-height information may be ambiguous;

the information is therefore stored in the form of probability

densities given a connected component shape. The connected

components do not need to correspond to characters; they

might be ligatures or frequently touching character pairs like

“oo” and “as”.

When the baseline and x-height of a new text line need to

be determined, the connected components are extracted from

that text line and the associated probability densities for the

baseline and x-height locations are retrieved. These densities

are then mapped and locally averaged across the entire line,

resulting in a probability map for the baseline and x-height

lines across the entire text line. Maps of x-height and baselines

of an example text line (Figure 2-(a)) are shown in Figure 2-

(b) and (c) respectively. The resulting densities are then fitted

with curves and used as the baseline and x-height for line

size normalization. In line size normalization, the (possibly

curved) baseline and x-height lines are mapped to two straight

lines in a fixed size output text line image, with the pixels in

between them rescaled using spline interpolation. The code for

the normalization procedure has been released in open source

form as part of the OCRopus system [1].

III. LSTM NETWORKS

For recognition, we use a 1D bidirectional LSTM archi-

tecture, as described in [10]. We did preliminary experiments

on 2D LSTM architectures, as used for handwriting recog-

nition [18], but found them not to be superior for printed

OCR in those preliminary experiments. For all the experiments

reported in this paper, we used a modified version of the

LSTM library described in [19]. That library provides 1D

(a) original text-line image

(b) x-height map of the text-line

(c) baseline map of the text-line

Fig. 2: Extraction of x-height and baseline of a text-line.

(a) shows the original text-line image. (b) shows a map of

predicted locations of a line at x-height, and (c) shows a

map of predicted locations of the baseline. Note that the x-

height is determined correctly for capital letters (although later

processing is robust to occasional errors as well).
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and multidimensional LSTM networks, together with ground-

truth alignment using a forward-backward algorithm (“CTC”,

connectionist temporal classification; [16]). The library also

provides a heuristic decoding mechanism to map the frame-

wise network output onto a sequence of symbols. We have

since reimplemented LSTM networks and forward-backward

alignment from scratch and reproduced these results (our

implementation uses a slightly different decoding mechanism).

The configuration of the network and the number of weights

mapping between and within layers is shown in Figure 3.

Training of the network proceeds by choosing text input

lines randomly from the training set, performing a forward

propagation step through the LSTM and output networks, then

performing forward-backward alignment of the output with the

ground-truth, and finally performing backward propagation.

The intermediate results of this computation are illustrated in

Figure 4.

IV. PERFORMANCE EVALUATION

To demonstrate the performance of the LSTM architecture

on OCR tasks, we performed a number of evaluations. As error

rate, we use the ratio of insertions, deletions, and substitutions

relative to the length of the ground-truth, where the accuracy

was measured at a character level. We have applied the LSTM-

based system to printed English and Fraktur texts.

A. Printed English Recognition

For English input, we used the University of Washington

(UW3) dataset [20], representing 1, 600 pages of document

images from scientific journals and other common sources.

Text line images and corresponding ground-truth text were

extracted from the data set using the layout ground-truth

and transcriptions provided with UW3. Text lines containing

mathematical equations were not used during either training or

testing. Overall, we used a random subset of 95, 338 text-lines

in the training set and 1, 020 text lines in the test set.

The text lines were normalized to a height of 32 in prepro-

cessing step. Both left-to-right and right-to-left LSTM layers

contain 100 LSTM memory blocks. The learning rate was set

to 1e− 4, and the momentum was set to be 0.9. The training

Fig. 3: Configuration of trained BLSTM network. There are

12, 800 weights between input and hidden layers, while there

are 15, 900 weights between hidden layers and output layer.

There are 40, 000 weights for self-looping states at hidden

layers. Input is a one dimensional with depth of 32.

was carried out for one million steps (roughly corresponding to

100 epochs, given the size of the training set). Test set errors

were reported every 10, 000 training steps and plotted. The

configuration of trained LSTM network is shown in Figure 3.

Our LSTM network was able to achieve 0.6% (No. of total

characters, N = 50, 632) error on the test-set. There were

a total of 313 errors and top confusions are space deletions

(34 times), period confused with comma (25), underscore
deletions (16), period confused with underscore (10), comma
confused with period (6), y confused with v (5), I deletions

(5) and i deletions (4).

To compare the results with other contemporary OCR

systems, we used the same test-set. We used OCRopus [1],

Tesseract [21] and ABBYY [22] systems for comparison.

The Tesseract system achieved a recognition error of 1.299%
when run in line-wise mode with an English language model,

ABBYY achieved 0.85% using the “English” setting, and the

previous segmentation-based OCRopus recognizer achieved

2.14%.

It should be noted that all these systems employ language

modelling techniques to post-process the raw output, and in

some cases other sophisticated techniques like font recogni-

tion and adaptivity. The LSTM network, on the other hand,

achieved the results without any language modelling, use of

a dictionary, adaptation, or post-processing. Running time is

under a second for a regular text line on a modern desktop PC;

our software parallelizes recognition over all available cores.

Representative inputs and outputs are shown in Figure 1.

Table I presents the comparison of three OCR systems on

the UW3 modified dataset.

B. Fraktur Recognition

We also applied the bidirectional LSTM architecture on

Fraktur, a common historical German script similar to En-

glish Blackletter. Fraktur documents contain many touching

characters, as well as ligatures. The training set was a fairly

small set of about 20, 000 text lines of mostly artificially

generated characters. We did not evaluate test set error on

the artificial training data, since that would not have been

very informative. Instead, we tested performance on two books

that we use as test cases: Theodor Fontane Wanderungen
durch die Mark Brandenburg (a clean, high resolution scan)

TABLE I: Character error rates of the LSTM recognizer

(without a language model or adaptation), the Tesseract [2],

ABBYY commercial OCR system [22] and the OCRopus

segmenting recognizer [1]. Error rates are on the UW3 data

set (English, modern print, N=50, 632), the Fontane dataset

(German, Fraktur, N=8, 988) and the Ersch-Gruber dataset

(German, Fraktur, N=10, 881).

OCR System English Fontane Ersch-Gruber
OCRopus-LSTM 0.6 0.15 1.37

Tesseract 1.3 0.9 1.47

ABBYY 0.85 1.23 0.43

OCRopus-lattice 2.14 - -
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Fig. 4: An illustration of the training steps of the LSTM recognizer: (a) input text line together with ground-truth; we refer to

each vertical slice of the input image as a frame, (b) frame-wise output from the LSTM network in image form, together with a

decoded transcription, (c) frame-wise output from LSTM network after alignment with ground-truth using a forward-backward

algorithm, (d) a graph of posterior probabilities for spaces (green), the top class (blue), and the reject class (yellow), (e) a

graph of the total error signal used in the back-propagation step. Note that after only 5400 training lines, the network already

recognizes this input perfectly. Interestingly, the error signal (e) has a very non-Gaussian distribution, with occasional large

spikes. These spikes seem to correspond to internal reorganizations of the state space used by the LSTM model.

and the Ersch-Gruber encyclopedia (a noisy, lower resolution

scan). Text in Antiqua (Latin) fonts was excluded from the

evaluation. Since error rates were so low, we could quickly

determine error rates and ground-truth using a spell checker

and verifying any flagged words against the source image;

since the texts contains few digits and little punctuation, this

yields good error estimates. On randomly selected pages from

Fontane representing 8, 988 Fraktur characters, the error rate

was 0.16%. On Ersch-Gruber, the error rate was 0.82% on

randomly selected page images representing 10, 881 Fraktur

characters. These results are without a language model and

without adaptation to the fonts found in these documents.

Some examples of Fraktur errors are shown in Figure 1.

Like printed English, recognition results for Fraktur (for

both Fontane and Ersch-Gruber) were compared with other

OCR systems. The Tesseract system applied to these inputs

yielded error rates of 0.898% (Fontane) and 1.47% (Ersch-

Gruber), using a German dictionary and font adaptations.

ABBYY commercial OCR system gave error rates of 1.23%
on Fontane and 0.43% on Ersch-Gruber).

V. CONCLUSIONS

The results presented in this paper show that the combi-

nation of line normalization and 1D-LSTM yields excellent

OCR results for both Latin/Antiqua OCR and Fraktur OCR.

Improvements of 0.3 − 0.6% error (as demonstrated for our

system) may seem small, but they are enormously significant

both in terms of differences between OCR systems and in

terms of practical applications, greatly reducing the need

for manual post-processing. Our benchmarks suggest that

error rates for LSTM-based OCR without a language model

are considerably lower than those achieved by segmentation-

based approaches (OCRopus, Tesseract) and HMM-based ap-

proaches, or commercial systems, even with language models.

We noted that the approach, treating the input text line like

a sequence of “frames” over time is related to HMM-based

approaches [4] and Document Image Decoding [23], but the

LSTM approach has only three parameters, the input size, the

number of memory units, and the learning rate.

A common and valid concern with OCR systems based

on machine learning or neural network techniques is whether

they will generalize successfully to new data [2]. That is, in

machine learning, we would ordinarily determine the error rate

of a system by taking a data set, dividing it into training and

test sets, train the system on the training set and evaluate on

the test set. However, our own experience, as well as that

of other practitioners has been that such estimates do not

reflect well the real-world performance of OCR systems, since

OCR data is, in a sense, data whose distribution has “long

tails”; that is, new text that an OCR system will be applied

to often differs significantly from all training data. There is

currently no standard testing procedure or widely used data

set in the document analysis community to address this prob-

lem. However, there are several indications that LSTM-based

approaches generalize much better to unseen samples than

previous machine learning methods applied to OCR. One such

indication is the excellent performance of the LSTM-based

Fraktur recognizer when trained on artificial training data and

tested on scanned Fraktur books. In addition, during LSTM

training, we often observe very low error rates long before

even one epoch of training has been completed, meaning that

there has likely not been an opportunity to “overtrain”. In

addition, LSTM-based systems have been found to generalize

well to novel data by other practitioners [9]. We will be trying

to address this with further benchmarks in the future.
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An unsatisfactory aspect of LSTM-based models is that

they are “black box” models; that is, little is known why or

how they achieve their excellent performance. Other users of

LSTM models have shown that such models are capable of

learning a variety of formal languages, and learn them better

than previous approaches, but how that is achieved still has

not been explained in detail. We are currently investigating

and analyzing how these models work internally and how their

operation relates to HMM and segmentation-based approaches.

The normalization procedure used for recognition is com-

plex and requires a separate training step. This both compli-

cates the training and limits the method to scripts in which

connected components can give us useful information about

the geometry of the printed text. We have therefore started ex-

ploring simpler, script and connected-component independent

methods for line normalization.

Overall, although the method itself can certainly be refined

and the benchmarking ought to be strengthened in future

work, we believe that these results show that LSTM has a

strong potential of outperforming existing approaches to OCR.

In addition, the absence of a need for a separate language

modelling step, of the need to heuristically choose “HMM

structures” or “input features” or “character segmentation

algorithms” is a big advantage in being able to cover new

languages and scripts.

Training of 1D LSTM models for OCR is considerably

simpler than previous training methods, since all training is

carried out in terms of text line images and transcriptions.

In addition, training from artificially generated data is highly

successful, as the results from Fraktur recognition show. This

has enabled the creation of a new labeling tools (ocropus-
gtedit) that allows new ground-truth to be generated and

transcribed using a simple, single-page web based interface,

and a new tool (ocropus-linegen) for generating large amounts

of artificial training data from TrueType fonts and represen-

tative text; these will be described elsewhere. In terms of

parameters, beyond text line normalization, all that is required

is choosing the input size (currently 32) and the number

of internal state units (currently 100). In these experiments,

we did not optimize them. Preliminary results suggest that

using larger input sizes and more internal state units results

in faster learning and possibly additional reductions in error

rates on UW3; we will be exploring the parameter space

more thoroughly in future work. We have focused on 1D

LSTM networks in this work because preliminary experiments

suggested that they were faster and yielded better results;

it is possible that some 2D LSTM variants might achieve

better performane, and we will investigate this. Techniques

like combining multiple models, word recognition, adaptivity,

and language modeling can be incorporated into LSTM-based

OCR, and we are actively exploring these.

An implementation of LSTM and line normalization meth-

ods is being released in open source form [24], allowing other

practitioners to test, evaluate, and reuse the methods described

in this paper, as well as to easily train text recognizers for

novel scripts.
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