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Abstract. Hyperspectral cameras acquire precise spectral information,
however, their resolution is very low due to hardware constraints. We pro-
pose an image fusion based hyperspectral super resolution approach that
employes a Bayesian representation model. The proposed model accounts
for spectral smoothness and spatial consistency of the representation by
using Gaussian Processes and a spatial kernel in a hierarchical formulation
of the Beta Process. The model is employed by our approach to first infer
Gaussian Processes for the spectra present in the hyperspectral image.
Then, it is used to estimate the activity level of the inferred processes in a
sparse representation of a high resolution image of the same scene. Finally,
we use the model to compute multiple sparse codes of the high resolution
image, that are merged with the samples of the Gaussian Processes for
an accurate estimate of the high resolution hyperspectral image. We per-
form experiments with remotely sensed and ground-based hyperspectral
images to establish the effectiveness of our approach.
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1 Introduction

Spectral characteristics of materials are considered vital in remote sensing, med-
ical imaging and forensics [1–6]. Recently, they have also shown improved per-
formance in various computer vision tasks, e.g. recognition [7–9], document
analysis [10,11], tracking [12], pedestrian detection [13] and segmentation [14].
Hyperspectral imaging is an emerging modality that can efficiently obtain high-
fidelity spectral representations of a scene. Nevertheless, the low resolution of
contemporary hyperspectral cameras is currently a bottleneck in its ubiquitous
use [4,15,16].

Reflectance spectra are characterized by their intensity distributions over
continuous wavelength ranges. Hence, hyperspectral cameras integrate scene
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radiance with hundreds of spectrally sharp bases, thereby requiring longer expo-
sures. This results in a reduced resolution image. Moreover, it is not straight-
forward to use high resolution sensors in hyperspectral cameras because they

Fig. 1. Schematics: Using the proposed model, a set of Gaussian Processes (GPs) is
inferred for the spectra in hyperspectral image. The means of the GPs are transformed
according to the spectral channels of a high resolution image X of the same scene.
The transformed means and X are used to compute a set B of Bernoulli distributions,
signifying the activity level of GPs in the sparse codes of X. Multiple sparse codes of
X are computed using the proposed model, each satisfying B. The computed codes are
used with the samples of GPs to estimate the high resolution hyperspectral image.

further reduce the photon density that is already confined by the spectral fil-
ters. These constraints make hyperspectral image super resolution a particularly
interesting research problem [17].

Currently, the resolution of the cameras that perform a gross quantization
of the scene radiance (e.g. RGB and RGB-NIR), is orders of magnitude higher
than that of hyperspectral cameras [4]. We collectively term the images acquired
by these cameras as the multi-spectral images. In this work, we propose to take
advantage of the high resolution of a multi-spectral image by merging its spatial
patterns with the samples of Gaussian Processes [18], learned to represent the
hyperspectral image of the same scene. Gaussian Processes provide an excellent
tool for modeling natural spectra [19] because they can easily incorporate the
regularly occurring smoothness of spectra. To learn the Gaussian Processes,
we propose a novel Bayesian representation model. Our model also incorporates
spatial consistency in the representation by employing a kernel in the hierarchical
formulation of the Beta Process [20]. We provide a detailed Markov Chain Monte
Carlo (MCMC) analysis [21] for the Bayesian inference using our model.

Employing the proposed model, we develop an approach for hyperspectral
image super resolution, shown in Fig. 1. The approach first uses the model to
infer Gaussian Processes to represent the low resolution hyperspectral image.
Then, the mean parameters of the processes are transformed to match the spec-
tral quantization of the high resolution multi-spectral image. The model is then
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employed with the transformed means and the multi-spectral image to infer a
set of Bernoulli distributions. These distributions record the activity level of the
Gaussian Processes in the representation of the multi-spectral image. Exploiting
these distributions, the model is later applied to infer a set of sparse codes for the
multi-spectral image, that are used with the samples of the Gaussian Processes
to obtain a high resolution hyperspectral image. Experiments on remotely sensed
and ground-based hyperspectral images show that our approach obtains higher
fidelity super resolution images as compared to the state-of-the-art approaches.

2 Related Work

Hyperspectral imaging has been used in remote sensing for over three decades [22].
However, hyperspectral instruments installed in contemporary remote sensing
platforms still lack in spatial resolution [5,16]. High cost of replacing these instru-
ments and hardware limitations have motivated significant research in signal
processing based resolution enhancement of remote sensing imagery [16]. Pan-
sharpening [23] is one of the common techniques used for this purpose. It fuses
a pan-chromatic high resolution image with a hyperspectral image to improve its
spatial resolution. Wavelet based pan-sharpening [24], Intensity-Hue-Saturation
transform based methods [25,26] and pan-sharpening with principal component
analysis [27] are a few representative examples of this category.

Whereas sharp spatial patterns are apparent in pan-sharpened images, the
resulting images often suffer from significant spectral distortions [28]. This can
be attributed to the spectral limitations of the pan-chromatic images [29]. There-
fore, [30] and [31] fused multi-spectral images with hyperspectral images. They
used hyperspectral unmixing [32] for the image fusion. However, these meth-
ods assume relatively small difference between the spectral resolutions of the
images being fused. Moreover, they also under-perform when the imaged scenes
are highly mixed [33]. For such cases, their performance have been improved by
Zurita-Milla et al. [34] by employing a sliding window technique.

Recently, matrix factorization based approaches have consistently shown
state-of-the-art performance in hyperspectral image super resolution. These
approaches are divided into three categories based on their underlying assump-
tions. The methods in the first category [4,16,17,33] assume that only
the spectral transform between the images being fused is known beforehand.
Kawakami et al. [4] factored a hyperspectral image and an RGB image into
their respective bases and used the sparse codes of the RGB image with the
basis of the hyperspectral image. Huang et al. [33] applied a similar approach to
remote sensing imagery, using singular value decomposition to learn the bases,
whereas a sparsity controlled approach was employed in [17] for non-negative
matrix factorization. Motivated by the success of Bayesian matrix factorization
in RGB and gray scale image super resolution [35], Akhtar et al. [16] developed
a Bayesian approach for hyperspectral image super resolution.

The approaches in the second category [36–40] additionally assume priori
knowledge of the spatial transform between the images. Lanaras et al. [36,37]
formulated hyperspectral image super resolution as a coupled unmixing prob-
lem and proposed a matrix factorization algorithm to solve it. Their approach
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exploits the physical constraints generally followed by the spectral signatures.
Wycoff et al. [38] proposed to use the ADMM algorithm [41] for the factoriza-
tion procedure. A variational based approach is also proposed by Wei et al. [39]
for the same purpose. In [40], Yokoya et al. exploited the coupling between the
images being fused and developed a coupled matrix factorization technique for
hyperspectral image super resolution. They also noted that in practice, it is
challenging to obtain an accurate estimate of the spatial transform between the
images being fused. Nevertheless, accurate transform is generally assumed and
exploited by the approaches in this category. The methods in the third cate-
gory [29] assume availability of high resolution hyperspectral training data. This
implicitly imposes both of the above assumptions in addition to the requirement
that abundant training data is available despite hardware limitations.

Overall, the least restrictive methods are those belonging to the first category,
in which our approach also falls. Akhtar et al. [16] have established the usefulness
of Bayesian sparse representation for hyperspectral image super resolution. Nev-
ertheless, their approach has two major limitations. That is, it neither considers
the spectral smoothness nor the spatial consistency of the representation of the
nearby image pixels. In this paper, we address these limitations by (1) employing
Gaussian Processes for the spectral signatures to incorporate smoothness into
their representation; and (2) enforcing spatial consistency of the representation
with a suitable kernel in the hierarchical formulation of the Beta Process.

3 Problem Formulation

Let us denote an acquired hyperspectral image with L spectral bands by
Xh ∈ R

m×n×L. Let X ∈ R
M×N×l be the high resolution image of the same

scene obtained by a multi-spectral sensor. We aim at estimating a high reso-
lution hyperspectral image H ∈ R

M×N×L by merging X with Xh. The two
available images are considered to be linear mappings of the target image. For-
mally, Xh = Ωh(H) and X = Ω(H), where Ωh : RM×N×L → R

m×n×L and
Ω : RM×N×L → R

M×N×l. Moreover, we consider M � m,N � n and L � l,
to appropriately model the practical conditions. We neither assume prior knowl-
edge of the spatial transform between the images being fused nor the avail-
ability of high resolution hyperspectral training data. Following [4,16,17,33,37],
we assume aligned X and Xh. In practice, accurate alignment is possible using
beam-splitting mechanism [13].

We denote the number of pure spectral signatures (a.k.a endmembers) in an
imaged scene by K and the kth signature by ψk ∈ R

L. These signatures repre-
sent the reflectances of spectrally distinct materials in the scene Let Ψ ∈ R

L×K

be the matrix comprising these spectral signatures. Thus, a pixel xh ∈ R
L of the

hyperspectral image can be represented as xh = Ψα, where α ∈ R
K is a coeffi-

cient vector. A pixel of the multi-spectral image can similarly be represented as
x = ˜Ψβ, where ˜Ψ ∈ R

l×K is obtained by transforming Ψ , such that ˜Ψ = ΔΨ .
Following the literature (see Sect. 2), we assume a priori knowledge of the spec-
tral transformation operator Δ ∈ R

l×L. Since the exact value of K is generally
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unknown, we allow for K > L. Hence, we expect the coefficient vectors α and
β to be sparse. Adopting the naming conventions from the sparse representation
literature [42], we refer to Ψ and ˜Ψ as dictionaries; to their columns as dictionary
atoms; and the vectors α and β as sparse codes.

4 Proposed Approach

Our approach utilizes a hierarchical Bayesian sparse representation model, that
we propose to represent hyperspectral images. The model is used to infer an
ensemble of dictionaries for the hyperspectral image in the form of Gaussian
Processes (GPs) [18]. GPs are particularly well-suited for forming dictionaries for
hyperspectral images because they can easily incorporate the relative smoothness
of the natural spectra with appropriate kernels. The approach transforms the
mean parameters of the GPs and uses them with the multi-spectral image X to
estimate the activity level of the GPs in the sparse representation of X. We again
utilize the proposed model for this estimation. Lastly, the model is used to learn
multiple sparse codes of X that are combined with the samples from the GPs
to compute the high resolution hyperspectral image. The proposed approach is
summarized in Fig. 1.

4.1 Dictionary Learning

Below, we describe the proposed representation model and its Bayesian inference
process that results in the learning of the GPs (i.e. dictionary atoms). Other
stages of our approach also exploit the same model, with minor variations in the
inference process. We explain those variations in Sects. 4.2 and 4.3.

Representation model: We model the ith pixel of a hyperspectral image as xh
i =

Ψαi + εh
i , where εh

i ∈ R
L represents noise. The following hierarchical Bayesian

representation model is proposed to compute the probability distributions over
the dictionary atoms and the sparse codes:

xh
i = Ψαi + εh

i (1)

ψk ∼ GP(ψk|0,Σk)

Σk(θa, θb) =
1
ηk

exp
(−|θb − θa|

ηo

)

ηk ∼ Gam(ηk|ao, bo)
αik = wikzik

wik ∼ N (wik|0, λ−1
w )

λw ∼ Gam(λw|co, do)

zik ∼ Bern(zik|πik)

πik = eT(κ � Ξik)e
Ξik(q, r)∼ Beta (Ξik(q, r)|eoρk, fo(1 − ρk))

ρk ∼ Beta
(

ρk

∣

∣

go

K
,
ho(K − 1)

K

)

εh
i ∼ N (εh

i |0, λ−1
ε IL)

λε ∼ Gam(λε|ko, lo).

In the above expressions, N , Gam, Bern and Beta respectively denote the
Normal, Gamma, Bernoulli and the Beta probability distributions. The symbol
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� denotes the element-wise product and the subscript ‘o’ signifies the hyper-
parameters of the distributions whose values remain fixed during the inference
process (discussed below). For reading convenience, we explain the remaining
symbols along the relevant discussion on the representation model.

In the proposed model, we let the kth dictionary atom ψk to be a sample
drawn from a Gaussian Process. We define the kernel of a Gaussian Process,
i.e. Σk ∈ R

L×L, such that it promotes high correlations between the adjacent
coefficients of ψk. Recall that, ψk signifies a spectral signature in our formula-
tion. Thus, the kernel incorporates the relative smoothness of the spectra in the
proposed model. In the given definition of the kernel, θt denotes the wavelength
at the tth channel of the image, whereas |.| represents the absolute value. Such
an exponential form of the kernel is common for Gaussian Processes [18]. How-
ever, we also include an additional scaling parameter ηk in the kernel to allow
it to adjust to the observed data. The value of this parameter is automatically
inferred in our approach. We place a non-informative Gamma prior over ηk;

such that Gam(ηk|ao, bo) = bao
o η

(ao−1)
k

Γ (ao)
exp(−boηk), where Γ (.) is the well-known

Gamma function. The remaining model also utilizes the same functional form of
the Gamma prior. In our approach, the value of ηo is fixed to 1/L.

We compute the kth coefficient αik of αi as the product of a sample wik

from a Normal distribution, with precision λw; and a sample zik ∈ {0, 1} from
a Bernoulli distribution, with parameter 0 ≤ πik ≤ 1. Thus, according to our
model, a pixel xh

i selects the kth dictionary atom in its representation with
a probability πik. This statistical modeling of αi is inspired by the weighted
Beta-Bernoulli Process [43]. Zhou et al. [43] showed that Bernoulli priors over
the support of αi, with conjugate Beta priors, successfully capture the intrinsic
sparsity of the signal. On the other hand, Normal priors (over wik) take care of
the coefficient weights. For a similar situation, Akhtar et al. [16] directly placed a
Beta probability prior over the Bernoulli distribution parameter. However, their
approach neither forces the atoms of the dictionary nor the sparse codes to be
similar for the nearby pixels in the image. To enforce this spatial consistency
in the representation model, we compute πik as a weighted sum of the samples
from a Beta probability distribution. In our approach, these Beta distribution
samples signify the probabilities of selection of ψk in the representations of the
nearby pixels of xh

i . Hence, ψk has more chances to get selected for xh
i , if that

dictionary atom is also used in the representations of the nearby pixels of xh
i .

Concretely, we let πik = eT(κ � Ξik)e, where e ∈ R
P is a vector of 1s;

κ ∈ R
P×P is the spatial kernel and Ξik ∈ R

P×P comprises the samples of a
Beta probability distribution. Here, P is the size of the image patch that contains
the neighborhood pixels centered around xh

i . We compute a coefficient of κ at
index (q, r) as κ(q, r) = exp(−‖Ii − Ij‖2/σo), where It denotes the index of
the tth pixel in the image and σo decides the kernel width. We sample Ξik(q, r)
from a Beta distribution and, keeping in view the physical significance of these
samples, we place a second Beta prior over the parameter ρk of the distribution.
The second prior plays the same role in our model that is played by the Beta prior
in the model employed by Akhtar et al. [16]. However, the resulting stochastic
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process uses GP as the base measure in our model, instead of a Multi-variate
Gaussian, as in [16]. We also note that the notion of hierarchical construction
of the Beta Process was first introduced by Thibaux and Jordan [20]. However,
our model differs from their proposal, as they did not use a kernel for computing
πik and employed a Normal distribution as the base measure.

Following the literature [4,16] we consider white noise in our model. In Eq. 1,
the covariance matrix of the noise distribution is denoted as λ−1

ε IL, where IL ∈
R

L×L is the identity matrix. We place a Gamma prior over the noise precision
λε. This allows a Bayesian model to automatically adjust to the noise level of
the observed data [43].

Inference: We perform Markov Chain Monte Carlo (MCMC) analysis [21] to
infer the posterior probability distributions over the dictionary atoms and the
sparse codes using our model. Below, we derive the expressions of the probability
distributions that are sampled sequentially to perform the MCMC analysis. The
sampling process is carried out iteratively.

Sampling ψk: For brevity, let us denote the contribution of ψk to xh
i as xh

iψk
=

xh
i − Ψ(wi � zi) + ψk(wikzik), where wi, zi ∈ R

K are the vectors formed by
concatenating wik and zik, ∀k. According to our model, the posterior probability
distribution over ψk can be expressed as:

p(ψk|−)∝
mn
∏

i=1

N (xh
iψk

|ψk(wikzik), λ−1
ε IL)GP(ψk|0,Σk).

Exploiting the linear Gaussian model [44], it can be shown that GP(ψk|μk, ̂Σk)
must be used to sample this posterior probability distribution, where

̂Σk =

(

Σ−1
k + λε

mn
∑

i=1

(wikzik)2
)−1

, μk = λε
̂Σk

mn
∑

i=1

(wikzik)xh
iψk

.

Sampling ηk: According to the proposed model, the posterior probability dis-
tribution over ηk can be written as p(ηk|−) ∝ GP

(

Ψ |0, 1
ηk

˜Σk

)

Gam(ηk|ao, bo),

where 0 is a vector of zeros in R
L and ˜Σk = exp (−|θb − θa|/ηo). The right

hand side of the proportionality can be further be expanded into the following

expression:
bao

o ( L√2π)−1
ηao−1

k

Γ (ao)

√
det
(

1
ηk

Σ̃k

) exp
{

−ηk

2 ψT
k

˜Σkψk − boηk

}

, which is proportional

to the Gamma probability distribution Gam
(

ηk|ao + L
2 , bo + 1

2ψT
k

˜Σkψk

)

, that
we use to sample ηk.

Sampling wik: The posterior distribution over wik has the functional form
p(wik|−) ∝ N (xh

iψk
|ψk(wikzik), λ−1

ε IL)N (wik|0, λ−1
w ). Again, making the use

of the linear Gaussian model, wik can be sampled from N (wik|μw, ̂λ−1
w ), where

̂λw = λw + λεz
2
ikψT

k ψk and μw = zikψTxh
iψk

λε/λw.
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Sampling λw: According to our model, the posterior over λw can be written

as: p(λw|−) ∝
mn
∏

i=1

N (wi|0, λ−1
w IK)Gam(λw|co, do). Hence, employing the con-

jugacy between the Normal and the Gamma distributions, we sample λw from

Gam(λw|Kmn
2 + co,

1
2

mn
∑

i=1

wT
i wi + do).

Sampling zik: We can write p(zik|−) ∝ N (xh
iψk

|ψk(wikzik), λ−1
ε IL)Bern

(zik|πik). From here, it is easy to show that zik must be sampled from the
Bernoulli distribution: Bern

(

zik| γ
1−πik+γ

)

, where γ = exp
(

− λε

2 (ψT
k ψkw2

ik −
2wikxhT

iψk
ψk)

)

.

Sampling Ξik(q, r): Let Ξik(q, r) = ξik and π
∼(q,r)
ik = πik − κ(q, r)ξik. Using

these notations, we can express the posterior distribution over Ξik(q, r) as:

p(ξik|−) ∝ Beta (ξik|eoρk, fo(1 − ρk))
∏

q,r∈{1,...,P}
Bern

(

zik|κ(q, r)ξik + π
∼(q,r)
ik

)

.

This distribution can not be directly sampled. However, considering its functional
form, it is possible to associate the popularity of the kth dictionary atom to the
pixels in the neighborhood ℵ of xh

i as:

ξik ∼Beta
(

ξik

∣

∣

∣eoρk +
∑

{j:(p,q)∈ℵ}
zjk, fo(1 − ρk) +

∑

{j:(p,q)∈ℵ}
(1 − zjk)

)

.

We use the above distribution as the proposal distribution Q in the Metropolis
Hastings (MH) algorithm [45] and in step τ of MH algorithm, we draw ξ∗

ik ∼
Q(ξik|ξτ

ik), where ξτ
ik is the current ξik, and accept the sample with a probability:


 = min
{

1,
p(ξ∗

ik)Q(ξτ
ik|ξ∗

ik)
p(ξτ

ik)Q(ξ∗
ik|ξτ

ik)

}

It can be shown that the fraction in the brackets can be analytically computed
as follows:
(

ξτ
ik

ξ∗
ik

)

∑
{j:(p,q)∈ℵ}

zjk
(

1 − ξτ
ik

1 − ξ∗
ik

)

∑
{j:(p,q)∈ℵ}

(1−zjk)
∏

{j:(p,q)∈ℵ}

(

1 +
Υ

ξτ
ik

)zjk
(

1 − Υ

1 − ξτ
ik

)1−zjk

,

where Υ = κ(p, q)(ξ∗
ik − ξτ

ik).

Sampling ρk: The posterior on ρk can be expressed as:

p(ρk|−) ∝ Beta
(

ρk

∣

∣go/K, ho(K − 1)/K
)

mn
∏

i=1

Beta (ξik|eoρk, fo(1 − ρk)) .

For analytical simplification, we let eo = fo = 1. By expanding the expressions
for the distributions and neglecting the constant terms, we can show that ∀i ∈
{1, . . . , mn}:

p(ρk|−) ∝ ρ
( go

K
−1)

k (1 − ρk)

(
ho(K−1)

K
−1
)

(Γ (ρk)Γ (1 − ρk))mn

(

ξik

1 − ξik

)ρkmn

.
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Here, the term depending on ξik can be simplified to exp
(

ρk

mn
∑

i=1

log ξik

1−ξik

)

.

Therefore, following Zhou et al. [46], we use slice sampling algorithm [47] to
sample ρk from the following exponential distribution:

ρk ∼ Exp

(

mn
∑

i=1

log
ξik

1 − ξik

)

R(ς, υ, ω),

where R(ς, υ, ω) is the range of ρk and υ ∼ Unif(0, (1 − ρk)(
ho(K−1)

K −1)), ς ∼
Unif(0, ρ(

go
K −1)

k ) and ω ∼ Unif(0, sinmn(πρk)). Here, Unif denotes the uniform
distribution. We restrict 0 < ρk < 1 and exploit the fact that Γ (ρk)Γ (1 − ρk) ∝
1/ sin(πρk) [48] to arrive at the expression for sampling ω.

Sampling λε: We have p(λε|−) ∝
mn
∏

i=1

N (xh
i |Ψ (wi � zi), λ−1

ε IL)Gam(λε|ko, lo).

Again, by employing the conjugacy of the probability distributions we can sample

λε from Gam
(

λε|Lmn
2 + ko,

1
2

mn
∑

i=1

||xh
i − Ψ(wi � zi)||22 + lo

)

, where ||.||2 denotes

the vector �-2 norm.

4.2 Support Distribution Learning

Once the inference is complete, we get a set G ⊂ R
L of K Gaussian Processes,

where each process represents a probability distribution over a dictionary atom.
Probability distributions over other model parameters (e.g. zik) are also inferred
as by-products, however they are not required by our approach. We transform
the means of the GPs using the spectral transformation operator Δ and use them
to represent the high resolution multi-spectral image X. To learn the represen-
tation, we again use the proposed model. However, during inference, instead
of sampling for the dictionary atoms, we keep them fixed to the transformed
means of the GPs. For our model, this implies ηk → ∞. Therefore, we also
do not sample for ηk. These modifications in the sampling process effectively
reduce our dictionary learning process to a sparse coding process. We defer fur-
ther discussion on sparse coding to Sect. 4.3. Here, we are interested in the set
B ⊂ R of K × MN Bernoulli distributions (i.e. parameters πik,∀i, k) computed
by the inference process. This set contains K distributions for each pixel of X
that determines the support (indices of non-zero elements) of the sparse codes
for that pixel. Since the basis vectors for the sparse codes are the transformed
means of the GPs, B encodes the activity level of the GPs in the sparse repre-
sentation of X. We store B to later exploit it in an accurate reconstruction of
the high resolution hyperspectral image.

We emphasize that the association of K Bernoulli distributions with a single
pixel in our approach is different from the affiliation of K such distributions with
the complete image, used by Akhtar et al. [16]. Our approach computes more
distributions to promote spatial consistency in the representations.
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4.3 Sparse Coding

Let us briefly consider the sparse coding process for a pixel x of X, discussed in
the previous section. That process computes the codes β of x, such that their
support follows the Bernoulli distributions in B. Let z ∈ R

K be the binary vector
indexing that support. It is easy to imagine that sampling the same distributions
in B multiple times, can often result in different z. Being a sample of the learned
Bernoulli distributions, each such z is a useful support of the sparse codes for our
approach. This entails the existence of multiple useful sparse codes and hence,
multiple useful reconstructions of x in our probabilistic settings.

Let ˜Ψ denote the dictionary formed by the transformed means of the GPs.
We can write, x̃ = ˜Ψ (w�z), where β = w�z and x̃ is the reconstructed x. We
propose the following lemma regarding x̃:

Lemma 1.
∥

∥E [x̃] − x
∥

∥

2

2
≤ ∥

∥x̃ − x
∥

∥

2

2
, where E[.] is the expectation operator.

Proof: We can write
∥

∥E [x̃] − x
∥

∥

2

2
=

∥

∥˜ΨE [β] − x
∥

∥

2

2
. Since β = w � z and mul-

tiple z exist, we can exploit the conditional expectation of the discrete random
variables to write E [β] = E

[

E[β
∣

∣z]
]

[49]. From the results in [16], we already
know that E

[

E[β
∣

∣z]
]

= βopt, where βopt is the optimal β with respect to the
squared error. Since, E [x̃] = ˜Ψβopt and x̃ = ˜Ψβ, where β is not guaranteed to

be optimal,
∥

∥E [x̃] − x
∥

∥

2

2
≤ ∥

∥x̃ − x
∥

∥

2

2
.

Lemma 1 shows that the expected value of multiple reconstructions of x can
be superior to its single reconstruction. Moreover, by using ˜Ψ = ΔΨ in the
above proof, we can extend this result to show that

∥

∥E[˜h] − h
∥

∥

2

2
≤ ∥

∥˜h − h
∥

∥

2

2
,

where h and ˜h denote the pixels of the target high resolution hyperspectral
image and its reconstruction, respectively. To exploit this finding, we adopted
the following strategy for the reconstruction of the super resolution image H.
First, we compute Q sparse codes for X using our model. For these computations,
we fixed both ˜Ψ and B during the Bayesian inference. Since the sparse codes
in Sect. 4.2 were also computed using the same B and ˜Ψ , we also use them in
the upcoming computations. Second, we draw Q + 1 samples from the already
inferred Gaussian Processes and use them with the available Q + 1 sparse codes
to construct the same number of reconstructions of H. Finally, we estimate the
expected value of these Q + 1 reconstructions by computing their mean. Note
that, the reconstructions are performed pixel-wise in our approach, where pixels
represent natural spectra. In light of Lemma 1 and the above discussion, the
mean reconstructed pixels are smoothened spectra with minimum squared error
with respect to the ground-truth pixels.

5 Experiments

We have evaluated our approach on both remote sensing and ground-based hyper-
spectral images. For the evaluation metrics, we used the Root Mean Squared
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Error (RMSE) [16] and the Spectral Angle Mapper (Sam) [50]. We mainly com-
pare our approach to the Matrix Factorization based approach (MF) [4], the
Spatial-Spectral Fusion Method (SSFM) [33], the Generalized Simultaneous OMP
based method (GSOMP) [17] and the Bayesian Sparse Representation approach
(BSR) [16]. These are the state-of-the-art approaches in the first category of the
hyperspectral super-resolution techniques (see Sect. 2) to which our approach also
belongs. We note that few approaches from the second and the third category
have recently reported impressive results [29,37,40]. However, those results are
obtained by exploiting additional prior knowledge, which is not always available
(and hence, not assumed in this work).

In our experiments, we used the author-provided implementations for
GSOMP and BSR, with the parameter values reported for the same data sets
in [16,17]. Due to the unavailability of public codes for MF and SSFM, we
implemented these approaches using the SPAMS library [51], that is well-know
for its accuracy. The parameter values of these approaches were carefully opti-
mized such that the achieved results were the same or better than the previously
reported best results for these approaches on common images. We defer the dis-
cussion on the parameter settings of our approach to Sect. 6. We follow a common
evaluation protocol [4,16,17] that considers an available hyperspectral image as
the ground truth and constructs a low resolution hyperspectral image by averag-
ing 32 × 32 disjoint blocks of the ground truth. A high resolution multi-spectral
image is constructed by spectral transformation of the ground truth, with a
known transformation operator Δ.

Table 1. Benchmarking on remote sensing images: The results are in the range of 8
bit images. The best results are given in bold in green cells. The second best values are
in blue cells. Image names are according to the source data set.

AVIRIS data set

Image SC01 SC02 SC03 SC04

Method RMSE Sam RMSE Sam RMSE Sam RMSE Sam

MF [4] 1.32 1.85 1.55 1.60 1.62 1.51 2.73 2.49

SSFM [33] 1.35 1.68 1.56 1.59 1.77 1.59 2.68 2.31

GSOMP [17] 1.30 1.39 1.52 1.63 1.79 1.80 1.54 2.05

BSR [16] 1.21 1.33 1.54 1.61 1.46 1.58 1.62 1.77

Proposed 0.92 1.26 1.32 1.47 1.11 1.35 1.36 1.54

For the remote sensing images, we used a data set provided by NASA1, that
contains four hyperspectral images collected by the airborne sensor AVIRIS [52].
These 512×512×224 images are acquired in the wavelength range 370–2500 nm,
over Cuprite mines in Nevada, US. Due to water absorptions and low signal-
to-noise ratio, we removed 36 channels from the images, corresponding to the

1 Download link: ftp://popo.jpl.nasa.gov/pub/free data/f970619t01p02r02c rfl.tar.

ftp://popo.jpl.nasa.gov/pub/free_data/f970619t01p02r02c_rfl.tar
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wavelengths 370, 380, 1330 to 1430, 1780 to 1970, 2490 and 2500 nm. The result-
ing images are considered as the ground truth. We constructed a high resolution
multi-spectral image by selecting six bands of the ground truth, corresponding to
the wavelengths 480, 560, 660, 830, 1650 and 2220 nm. These bands roughly cor-
respond to the visible and mid-infrared wavelength channels of NASA-Landsat 7
satellite. Thus, the spectral transform Δ ∈ R

6×188 is a binary matrix in this
experiment, similar to [16,17,33].

Comparison of performance on the remote sensing images is summarized in
Table 1. The results are computed using the 8-bit intensity range. As visible in
the table, a considerable improvement in the results is achieved by our approach.
On average, the RMSE values for our approach are ∼18 % better than the pre-
vious lowest values. Similarly, the average gain in the spectral angle mapper
values is ∼9 %. This gain can be attributed to the spectral smoothness and the
spatial consistency of the images reconstructed by our approach, which are com-
mon attributes of remote sensing hyperspectral images. In Fig. 2, we compare
the reconstructions of two randomly selected contiguous pixels of image SC01 by
BSR [16] and our approach. BSR showed the second best results on this image.
Our approach not only reconstructs each pixel better due to the spectral smooth-
ness, but also due to the similarities between the adjacent pixels. The angles (in
R

188) between the shown ground truth pixels is 1.26◦. For our approach, this
angle is 1.28◦, whereas for BSR, its value is 3.23◦. We also show examples of the
reconstructed spectral images for SC01 by our approach and BSR in Fig. 3.

For the ground-based images, we evaluated our approach on hyperspectral
images of everyday objects from the CAVE database [53] and the images of
indoor and outdoor scenes from the Harvard database [54]. The 512 × 512 ×
31 images of the CAVE database are acquired using tunable filters over the

Fig. 2. Effect of spectral smoothness and spatial consistency: Two contiguous ground
truth pixels for SC01 are shown along their estimates with BSR [16] and our approach.

wavelength range 400–700 nm. The fixed focal length of the sensor has resulted
in a blur for the first two spectral bands of the images. We removed these bands
in our experiments to avoid any bias in the results. The remaining images are
considered as the ground truth. The use of tunable filters in the Harvard database
has resulted in spatial distortions in some images with moving objects (e.g. grass,
trees). We also avoid these images in our experiments for a fair evaluation.
Following [16,17] we used the top-left 1024× 1024 spatial patches as the ground
truth for this database.
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Fig. 3. Spectral images for SC01 at 460, 540, 620 and 1500 nm: The 512 × 512 recon-
structions of the ground truth are shown along the used 16× 16 low resolution images.
Absolute differences between the reconstructions and the ground truth are also shown.
The absolute difference images for BSR [16] are included for comparison.

Table 2. Benchmarking on ground-based images: CMF [40] and TDGU [29] (in red)
are included for reference only as these approaches belong to different categories.

CAVE database [53]

Image Balloons Beads Cloth Pompos CD

Method RMSESam RMSE Sam RMSESam RMSESam RMSESam

MF [4] (Cat. 1) 2.3 8.0 8.2 14.9 6.0 7.9 4.3 10.7 7.9 14.9

SSFM [33] (Cat. 1) 2.4 8.4 8.9 15.3 7.6 8.2 4.3 11.9 8.1 16.4

GSOMP [17] (Cat. 1) 2.3 8.1 6.3 14.1 4.2 5.2 4.4 10.0 7.5 18.7

BSR [16] (Cat. 1) 2.1 7.9 5.9 14.2 4.0 5.9 4.1 11.1 5.4 12.9

Proposed (Cat. 1) 1.9 7.6 5.8 13.7 3.7 5.0 3.9 10.1 5.3 10.6

CMF [40] (Cat. 2) 2.9 4.3 7.2 7.5 5.2 4.5 3.5 3.6 6.1 7.0

TDGU [29] (Cat. 3) 1.6 - 6.9 - - - - - 3.5 -

Harvard database [54]

Image Img h0 Img c2 Img d3 Img b5 Img b2

Method RMSESam RMSE Sam RMSESam RMSESam RMSESam

MF [4] (Cat. 1) 2.6 2.7 2.9 2.6 1.8 3.3 2.4 2.5 2.1 3.0

SSFM [33] (Cat. 1) 3.1 2.8 3.2 2.8 2.1 3.6 2.3 2.9 2.3 3.1

GSOMP [17] (Cat. 1) 3.3 2.9 2.8 1.9 1.7 3.2 0.9 2.2 1.6 2.7

BSR [16] (Cat. 1) 2.4 2.9 2.6 2.2 1.3 3.2 0.9 2.2 1.1 2.5

Proposed (Cat. 1) 2.2 2.5 2.4 1.9 1.4 3.0 0.8 2.1 1.1 2.3

CMF [40] (Cat. 2) 2.3 2.4 2.4 2.0 1.4 3.0 1.6 2.1 1.7 2.1

TDGU [29] (Cat. 3) - - - - - - 0.7 - - -
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Following [4,16,17] we constructed the high resolution multi-spectral images
by transforming the ground truth with the spectral response of Nikon D700
camera (http://www.maxmax.com/spectral response.htm). In Table 2, we show
the results on five commonly used benchmarking images of each database. For
reference, we also include results of representative methods from the remaining
two categories of the matrix factorization based hyperspectral super-resolution
techniques. The results of Coupled Matrix Factorization (CMF) [40] based app-
roach are directly taken from [37], whereas the performance of the Training Data
Guided Up-sampling (TDGU) method are taken from [29]. In Fig. 4, we show
examples of the super resolution spectral images. Although the performance of
the proposed approach is generally better than the existing approaches in the
same category, the improvements in the results are not as significant as for the
remote sensing images. In our opinion, the lower spectral resolution and larger
variations in the spatial patterns in the ground-based images are the reasons
behind this phenomenon. Nevertheless, our approach is generally able to per-
form better than the existing approaches on the ground-based images as well.

6 Discussion on Parameters

In all the experiments we used the value 10−6 for ao, bo, co, do, ko, lo and 1 for
eo and fo. The values of go and ho were adjusted to give a parabolic probability
density function of the Beta distributions, for which go/K ≈ ho(K − 1)/K.
We used ηo = 1/L and the spatial kernel width was set to 2 for the Harvard
database and 1 for the remaining data sets. This resulted in P = 5 and P = 3
respectively. Except for P , our model is fairly insensitive to small perturbations
in the parameter values, which is a common observation for Bayesian models [16].
The reported results are sensitive to the value of P because the considered low

Fig. 4. Spectral reconstruction at 460, 540 and 620 nm: The used 16 × 16 low reso-
lution images are shown along the reconstructions and the 512 × 512 ground truth.
Absolute differences between the reconstructions and the ground truth are also given.
(Left) ‘Balloons’ from the CAVE database [53]. (Right) ‘Img h0’ form the Harvard
database [54].

http://www.maxmax.com/spectral_response.htm
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resolution hyperspectral images have very small spatial dimensions. Keeping in
view the spatial dimensions of the images, we used K = 100 for the Harvard
database and 10 for the remaining data sets.

We initialized λε to 106, λw to 103, ηk to 10−3,∀k and πik to 10−3,∀i, k.
These initial values were selected considering the physical significance of the
parameters in our model. Nevertheless, the approach is generally insensitive to
these initial values. To learn the Gaussian Processes, we initialized the dictionary
with random samples of Multi-variate Gaussians and initialized the spare codes
by allowing half of them to have value 1. For sparse coding, we used the LASSO
solver of the SPAMS library [51] to initialize the sparse codes. In our experiments,
we processed the images as 2 × 2 overlapping patches.

We used 500 sampling iterations for dictionary learning and 300 and 100
iterations respectively for learning the Bernoulli distributions in B and sparse
coding. Fewer iterations were enough in the later stages because fewer probability
distributions were required to be sampled in those stages. We computed the codes
25 time, i.e. Q = 25 in our experiments.

7 Conclusion

We proposed a Bayesian approach for hyperspectral super resolution that fuses
a high resolution multi-spectral image with a hyperspectral image. It utilizes a
Bayesian sparse representation model that places Gaussian Process priors on the
dictionary and uses a kernel to promote spatial consistency in the representa-
tion. We also derived inference equations for the proposed model. The model is
used for inferring Gaussian Processes for the dictionary atoms, estimating their
popularity in the representation of the multi-spectral image and computing mul-
tiple sparse codes of that image. The sparse codes of the multi-spectral image
are used with the samples of the Gaussian Processes to finally estimate the super
resolution image. We tested our approach on remote sensing and ground-based
images. Our results show that the approach is useful for both types of images.
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