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Abstract—Traditional computer vision approaches heavily re-
lied on hand-crafted features for tasks such as visual object
detection and recognition. The recent success of deep learning
in automatically extracting representative and powerful features
from images has brought a paradigm shift in this area. As a
side effect, decades of research into hand-crafted features is
considered outdated. In this paper, we present an approach
for table detection in which we leverage a deep learning based
table detection model with hand-crafted features from a classical
table detection method. We demonstrate that by using a suitable
encoding of hand-crafted features, the deep learning model is able
to perform better at the detection task. Experiments on publicly
available UNLV dataset show that the presented method achieves
an accuracy comparable with the state-of-the-art deep learning
methods without the need of extensive hyper-parameter tuning.

Index Terms—document image analysis, table detection, ma-
chine learning

I. INTRODUCTION

Object detection in images has been an active topic of

research for decades. The traditional pipeline for object de-

tection consists of a feature extractor followed by a classifier.

Scale Invariant Feature Transform [1] made a break-through

in object detection by introducing a carefully designed hand

engineered feature extractor. The success of this method has

lead to many other feature extraction algorithms such as

SURF [2], Histograms of Oriented Gradients [3], ORB [4]

and many others. A similar trend was followed in document

analysis research, where different tasks such as detection

of mathematical symbols [5], graphical content [6], page

segments [7], and tables [8], [9] were powered by hand-

engineered features.

The success of deep learning in large scale object recog-

nition in recent years has demonstrated the capability of

deep networks in automatically learning representative features

from a large amount of data [10]. Advances in transfer learn-

ing algorithms have made it possible to adapt these learned

features to new domains for which only a limited amount

of training data is available. For instance, deep networks

trained on ImageNet data, which comprises of natural images

of various objects, have been shown to perform surprisingly

well on various document analysis tasks such as document

classification [11] and table detection [12].

In this paper, we argue that even though deep learning

algorithms are able to extract representative features from

large training sets, their representation capability remains

a function of the amount of data used for training. More

specifically, in scenarios where a limited amount of training

data is available, we can leverage decades of research that went

into feature engineering to further increase the performance of

deep networks. We take the task of table detection as a case

study to show how hand engineered features can be embedded

in an image to facilitate subsequent transfer learning for a deep

network.

Tables are widely used for displaying essential information

in documents in a structured form. They are used in research

articles, print media, books and many other types of docu-

ments. They show a large amount of information concisely

so that it is easy to understand by the readers, highlighting

the important information. Therefore, table detection plays

an important role in the area of document analysis and

recognition. Moreover, tables have a diverse range of layouts

and designs without any standardization. Different tables have

different features. This is why table detection is regarded as a

difficult problem for a general solution to be applicable. Hence

we chose table detection in documents as a case study for

implementing deep learning algorithm that also incorporates

hand engineered features.

For table detection, different heuristic techniques have been

proposed in the literature which work on the specific formats

of the tables but fail on others. Only recently, this problem is

greatly reduced by applying deep learning techniques as they

provide much better results than the previous methods.

Faster-RCNN [13], which is a deep learning technique

used on natural images for object detection can be used on

documents to detect tables. However, this technique requires

a large amount of data set to produce good results. This

problem is tackled by using transfer learning and domain

adaptation [14]. This paper presents the following approach to

the table detection problem. First, a document is pre-processed

and then fed into a Faster-RCNN model. The processing stage

is divided into two parts; color coding and image transfor-

mation. In color coding, blocks that are classified as tables

are extracted through the T-Recs algorithm (T-Recs) [8], [15],



[16]. These blocks are then color coded (details to follow).

Then the document image is transformed into a natural image

for Faster-RCNN. Thus, in our approach, we have increased

the accuracy of Faster-RCNN by providing it with external

features, thereby merging hand engineering and deep learning

techniques. This system is evaluated on UNLV dataset [14]

which is publicly available.

The rest of this paper is organized as follows. Section II con-

tains literature review and Section III elaborates our approach,

explaining both the processing stage as well as the detection

stage. Section IV presents the performance evaluation and the

experimental results. Finally, Section V gives the conclusive

remarks as a guide for future endeavours in this domain.

II. RELATED WORK

The problem of table detection has been addressed by

many researchers. Table detection techniques reported in the

literature can be divided into two classes; traditional rule-

based approaches using feature engineering and the recently

proposed machine learning based techniques. First, we will

discuss a few traditional approaches and then we will focus

on machine learning based solutions.

There have been many prominent works done by researchers

in the field of table detection. One of the well-known ap-

proaches, proposed by Kieninger et al. [8], [15], [16] is

called T-Recs. This algorithm forms word bounding boxes and

following a bottom-up approach they are grouped according

to their logical units. The issue in this approach is that it does

not perform well on multi-column layouts and is dependent

on the word bounding boxes.

Hu et al. [17] proposed an algorithm consisting of a high-

level framework which takes n number of lines as input and

groups a number of lines to form a table by considering a

measure of confidence. The measures to check the confidence

include merit, scores and correlation of lines. However, the

drawback of this approach is that it does not work on multi-

column table layouts.

Wang et al. [18] presented a statistical approach for table

detection. First, the document is pre-processed to label the

column structure. Then, table entity candidates are defined by

detecting large blank blocks. Finally, it uses a statistical-based

table refinement algorithm to reduce the false positives and

verify the results. The limitation of this algorithm is that it

only works on a specific document layout. Gatos et al. [19]

proposed another approach for table detection. The document

images are pre-processed, and then horizontal and vertical

lines are estimated after removing text lines. Then, the areas

of intersections are calculated and are grouped to form a table.

The constraint of this method is that it does not work in the

absence of ruling lines.

Mandal et al. [20] proposed an algorithm relying on the

observation of the presence of large gaps between the fields

of the table as compared to gaps in text lines. Therefore, ruling

lines were ignored and as a result removed from tables before

detection. This removal led to the poor performance of the

algorithm. Costa e Silva [21] used Hidden Markov Models

for table detection. Tables from PDFs are used as a dataset.

The PDFs are first converted into ASCII by pdftotext Linux

utility. This method only works on PDF documents and is

unable to correctly identify the first and the last table lines.

Hao et al. [22] presented the first approach of table detection

using deep learning. The candidate tables are selected based

on ruling line features present in a PDF. After these candidates

are passed through a convolutional neural network, the tables

are identified. However, this approach only works on PDF

documents and is not able to detect multi-column tables.

Rashid et al. [23] used machine learning for table detection.

They used a bottom-up approach where features of each

word are extracted as feature vectors which are then used

for training an AutoMLP classifier. These feature vectors

consist of features such as the distance of each word from

its neighbour, width and height of word as well as manual

features such as white space.

Schreiber et al. [12] presented a data-driven, deep learning

approach for table detection. This approach uses Faster RCNN

for table structure recognition. Gilani et al. [14] converted

document images to natural images by applying distance trans-

form techniques and then fed them to Faster R-CNN. Although

this approach out-perfomed the state-of-the-art Tesseract table

detection [9] in accuracy, it does not take into account the

background and foreground features of the tables. Arif et

al. [24] further improved this work by pre-processing the

document image in two phases. Observing that the tables

contain more numeric data than textual, they color coded

both types of data to assist the deep learning algorithm. In

the second step, they used image transformation from [14]

on document images and fed them to Faster R-CNN. This

approach showed even better results on UNLV data-set.

III. METHODOLOGY

The approach presented in this paper makes use of both

background and foreground features. Foreground features are

encoded using the traditional feature engineering approach and

passed to the deep learning module as an input. The back-

ground information is encoded and added to all three channels

taking inspiration from Gilani et al. [14]. Our approach can

be broken down into three core steps:

1) Foreground Feature Engineering

2) Background Feature Engineering

3) Deep Learning on Encoded Features

A. Foreground Feature Engineering

Foreground feature engineering process takes its first inspi-

ration from Kieninger et al. [16] which relies on bottom-up

clustering of word segments to extract table structure informa-

tion. In contrast to other feature engineering approaches that

use nearest neighbours [25] or run-length smoothing [26], this

approach does not look for separators of any kind. It identifies

and clusters the words that belong to the same logical group.

This makes it a robust approach when applied to the doc-

uments of different layouts and formats. Our approach starts

by creating a segmentation graph, which considers horizontally



(a) Feature Encoded Image (b) Transformed Image

Fig. 1: Feature Engineered Images without background (a)

with Background Transformation (b)

overlapping word neighbours in the previous and the next line.

All the overlapping words are grouped together to form text

blocks. The equation from [16] imposes the condition for two

words to belong to the same block i.e. if two words to x-axis

have a common range and they are located in subsequent lines

ovl(w1, w2) ⇐⇒ (x1[w1] ≥ x0[w0]) ∧ (x0[w1] ≤ x1[w2])∧

(line(w1) = succdoc(line(w2)∨

line(w2) = succdoc(line(w1))
(1)

Where ovl(w1,w2) is a symmetrical binary relation, wi rep-

resents the words, line represents an aggregation of words,

“succ” represents the appropriate successor function and xj

represents geometric coordinates [8].

The clusters created by the segmentation graph are then

tagged into logical groups. All blocks that consist of a single

word per line are classified as type 1 and everything else is

classified into a broader category called type 2. Segmentation

graph approach creates isolated words, those words are not

clustered to any block because they do not have any neighbor

in the line above or the line below. These words are the

candidates for the table header. A block is marked as a

paragraph if the block is of type 2 and its width exceeds

a defined threshold. Compact types are the blocks which have

width equivalent of maximum type 2 cell width multiplied by

the document width.

We take our second inspiration from Arif et al. [24] that

the tables generally represent more numeric information than

the textual information. In their paper, red color is allocated

to numeric data, whereas green color is allocated to textual

data as part of foreground encoding. Our approach encodes

the numeric and textual information in a single red channel

with different color codes. The numeric information is given

pixel value 255 and text information is given a pixel value of

128. Block type 1, type 2, type paragraph and type compact

encoding are added to the green channel with equal gray value

spacing. Blue channel contains an average of the red and green

channel.

Fig. 2: Proposed approach: Features are engineered and color

coded. Distance transform is applied to the original image

shown in Figure 1b. Both images are added and the resultant

image is be fed to the feature extractor. Feature map

generated by the feature extractor is then passed to the

region proposal network (RPN) which proposes the regions

where tables might be present. The detection network

processes the proposed regions as input and classifies them

into table or non-table regions.

B. Background Feature Engineering

Distance transformation is an effective approach to separate

the background from the foreground text. It calculates the

distance between the text region and the background of the

image. Tables generally contain sparse text providing reliable

indication of where a table might be present. We experimented

with the background encoding techniques used by Arif et

al. [24] and Gilani et al. [14] and found that the latter technique

outperforms the former. Euclidean transformation is applied

to the blue image channel, linear distance transformation

is applied to the green image channel and max distance

transformation to the red image channel. All these distance

transformations are added to the respective channels of the

feature encoded image.

C. Deep Learning on Encoded Features

Object detection algorithms have been effective on table

detection problem as demonstrated by [24] and [14]. We

have used Faster R-CNN due to its compelling accuracy

on large set object detection problems in different domains.

Faster R-CNN has two modules running serially. The first

one is the Region Proposal Network (RPN) which generates

the candidate regions for the Detection Network. The second

one is the Detection Network which classifies the candidates

as Tabular regions. The Faster R-CNN works faster than its

predecessor Fast R-CNN, as it replaces selective search with a

robust network called region proposal network (RPN). Figure 2

shows the proposed approach.

1) Feature Extractor: Feature extractor selection is an

important step. The original Faster R-CNN used Simonyan and

Zisserman model (VGG-16) [27] and Zeiler and Fergus model

(ZF) [28] pre-trained on ImageNet dataset [29] as a feature



Fig. 3: Selected images from the UNLV dataset demonstrating the results of our proposed approach, red boxes are the

detection results, Blue are the ground-truth

extractor. However, we have employed ResNet101 which is

trained on the KITTI data-set.

2) Region Proposal Network: Region Proposal Network

takes feature map produced by feature extractor and outputs

the bounding box along with the objectness score. RPN

takes each position in the last convolutional feature map and

generates k candidate anchors of different scales and ratios.

We have employed default configuration of Faster R-CNN

which uses three scales and three aspect ratios and outputs

k = 9 anchors. RPN generates region proposals by sliding a

small network of n × n over the last feature map. By doing

this, it generates a lower dimensional feature map which is

then passed to two 1 × 1 convolutional layers called box

classification and regression layers. Box classification layer

classifies that the bounding box output by the box regression

layer is a table region or a background. Box regression layer

produces 4 outputs, each set of four outputs provide the box

location. Non-maximum suppression is used to minimize the

number of bounding box proposals.

3) Detector Network: Region proposals from RPN mod-

ule are passed to the detection module which utilizes these

proposals to detect tables and return the box coordinates and

confidence scores of the candidates that are finally selected as

tables.

4) Training: A large amount of diverse data-set is required

to train a deep neural network from scratch. In case the

data is not available, fine-tuning of existing pre-trained deep

models is a viable option. Our training data-set contains

1,274 images collected by [24]. We have not done any data

augmentation to keep the dataset comparable with [24] and

highlight the accuracy gain achieved with our approach. We

have used transfer learning and domain adaptation to fine-

tune the weights of ReNet101, pre-trained on KITTI data-

set [30], with learning rate of 0.001 for first 50,000 iterations

and 0.0001 for next 20,000 iterations. We have trained our

model on 70,000 iterations and choose the best set of weights

by looking at the training and validation curves. Looking at the

Training and Validation accuracy graphs, the model converges

at 3̃5,000 steps. We have split our training data-set of 1,274

into 80:20 for training and validation to detect over-fitting

during the training process. The trained network was then

evaluated on the publicly available UNLV data-set. Note that

no part of the UNLV data-set was used for training.

IV. EXPERIMENTS AND RESULTS

This section provides details about the evaluation protocols,

results comparison and analysis of the data used for training

and evaluation.

A. Performance Measures

Algorithms for table detection are evaluated through differ-

ent measures. We have evaluated our approach by precision,

recall and F1 score. Several table detection algorithms [7],

[18], [20], [31], [32], were evaluated through precision and

recall. We used Schreiber et al. [12], Gilani et al. [14] and

Arif et al. [24] to compare the accuracy of our method.

Let Gi stand for ground truth bounding boxes and Dj for

our detected bounding boxes. The formula through which the

region that is overlapped by Gi and Dj is computed as:

A(Gi, Dj) = 2×
|Gi ∩Dj|

|Gi|+ |Dj|
, Aǫ[0, 1] (2)

The value of A(Gi ∩ Dj) will be between zero and one

where zero shows that areas of bounding boxes Gi and Dj do

not match at all while one shows complete match between Gi

and Dj.

1) Precision:: Precision is used to measure the performance

of table detection algorithm as a whole by calculating the

percentage of detected tables belonging to table areas of

ground truth table. Precision is calculated by the following

formula:

Precision =

Area of Ground truth regions in Detected regions

Area of all Detected table regions
(3)



TABLE 1

PERFORMANCE COMPARISON OF DIFFERENT TABLE DETECTION APPROACHES

Performance Measure
Accuracy (%)

Schreiber et al. [12] Gilani et al. [14] Arif et al. [24] Our Approach

Precision 72.67 77.28 86.33 88.39

Recall 89.45 90.88 93.21 91.04

F1 Score 80.19 83.53 89.64 89.70

2) Recall:: Recall is found by calculating the number of

table regions checked as detected table areas as a percentage

using the following formula:

Recall =
Area of Ground truth regions in Detected regions

Area of all Ground truth table regions
(4)

3) F1 Score:: The accuracy calculated through F1 score is

composed of both precision and recall as follows:

F1 Score = 2×
Precision × Recall

Precision + Recall
(5)

B. Experiments and Results:

To test the performance of the proposed technique we

have used the publicly available UNLV data-set which cov-

ers diverse formats and document layouts such as technical

reports, research articles, newspapers etc. A total of 2,889

scanned pages are available in the data-set out of which only

427 document images contain 570 table regions [24]. Our

approach uses features from a classical approach and encodes

them in a suitable format for the deep learning algorithms to

consume. We demonstrate that this approach works reasonably

well based on the performance metrics described earlier. The

sample results of the proposed approach are shown in Figure 3.

The proposed approach is benchmarked against Schreiber et

al. [12], Gilani et al. [14] and Arif et al. [24] where Arif et al.

is the state-of-the-art table detection technique. We consider

Schreiber et al. [12] as the baseline for our experiment as their

approach provides the unprocessed image as an input to the

Faster R-CNN for table detection. This gives a key insight

into the benefits of using traditional techniques to aid the

deep learning algorithm in making an inference. All of these

techniques use Faster R-CNN for detection and are evaluated

on the UNLV data-set. Hence, the experiment provides a

yardstick on the effect of encoding hand-engineered features

in the image which is then passed to a deep learning algorithm.

We have trained the approaches by Schreiber et al. [12],

Gilani et al. and Arif et al. [24] on the data-set proposed

by Arif et al. [24] and compared their generalization on

UNLV data-set with 427 table images. UNLV data-set was not

used in any part of the training process. Table 1 provides a

detailed comparison of our approach with Schreiber et al. [12],

Gilani et al. [14] and Arif et al. [24] using precision, recall

and F1 score metrics. Our approach achieved a Mean Area

Precision of 88.39% outperforming Arif et al. [24] 86.33%,

Gilani et al. [14] 77.28% and Schreiber et al. [12] 72.67%.

Our approach’s Recall rate is 91.04%, which is higher than

Gilani et al.’s 90.88% and Schreiber et al.’s 89.45% but lower

than Arif et al.’s 93.21%. Finally, our approach’s F1 score is

89.70% which our-performs Arif et al.’s 89.64, Gilani et al.’s

83.53% and Schreiber et al.’s 80.19%.

C. Analysis:

In-depth analysis of the results unfolds some interesting

facts. Firstly, the ground-truth for UNLV data-set was targeted

at a classical feature engineering approach which considered

ruling lines as table boundaries from the rest of the document

as shown in the Figure 4a and 4b. Our approach does not

encode ruling lines as a feature for the algorithm to learn. The

boxes created by the algorithm are regressed around the text

region rather than the ruling lines. Secondly, the training data

prepared in [24] does not contain any images from magazines

and newspapers. Newspapers and magazines have document

structure that may span up to four columns and the font-

size is generally smaller than that used in documents like

research papers and other articles. Our approach considers

the documents with more than two columns a table in itself

considering the absence of representative examples as shown

in 4c and 4d. Encoding of ruling lines as a feature into one

channel and improving the training data to contain document

images from newspapers and magazines have the potential to

improve the overall accuracy of the algorithm.

V. CONCLUSION

We presented an alternate approach towards solving com-

plex deep learning problems. The primary focus of this method

is to make use of hand-crafted features. We demonstrated

its effectiveness by encoding traditional hand-crafted block

structure features, text and numeric features, as well as back-

ground features in the image. These images are then fed to

a deep learning network (Faster R-CNN) which generates

the detection results. We have used publicly available UNLV

data-set for evaluating our approach and achieved results

comparable to the best-performing deep learning methods on

this dataset.
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