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Abstract— Deep learning based methods have achieved un-
precedented success in solving several computer vision problems
involving RGB images. However, this level of success is yet
to be seen on RGB-D images owing to two major challenges
in this domain: training data deficiency and multi-modality
input dissimilarity. We present an RGB-D object recognition
framework that addresses these two key challenges by effec-
tively embedding depth and point cloud data into the RGB
domain. We employ a convolutional neural network (CNN)
pre-trained on RGB data as a feature extractor for both color
and depth channels and propose a rich coarse-to-fine feature
representation scheme, coined Hypercube Pyramid, that is able
to capture discriminatory information at different levels of
detail. Finally, we present a novel fusion scheme to combine
the Hypercube Pyramid features with the activations of fully
connected neurons to construct a compact representation prior
to classification. By employing Extreme Learning Machines
(ELM) as non-linear classifiers, we show that the proposed
method outperforms ten state-of-the-art algorithms for several
tasks in terms of recognition accuracy on the benchmark
Washington RGB-D and 2D3D object datasets by a large
margin (upto 50% reduction in error rate).

I. INTRODUCTION

Recognizing unseen objects and instances in complex en-
vironments is a highly desirable capability for an interactive
robot. Developing this capability usually involves training
the robot in an off-line mode, where the robot is given a
set of training data with corresponding labels and is asked
to predict the labels for new instances during test time.
To develop a high performance recognition system, several
design considerations need to be met. Firstly, labeled training
examples must come in abundance to ensure good general-
ization of the trained model. Secondly, feature descriptors
must be both representative and discriminative to mitigate the
effect of high intra- and inter-class variability. Additionally,
the system must be computationally efficient especially at
test time to ensure feasibility for robotics applications.

Traditional object recognition methods rely on features
extracted from color images obtained by a typical RGB
camera. Recent advances in deep learning methods, espe-
cially convolutional neural networks (CNN), have resulted in
high accuracy recognition systems for RGB images [1]. The
advent of low-cost depth cameras, has opened up a number
of possibilities to use depth information to extract more
informative features. However, the availability of labeled
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RGB-D training data is much more restricted compared to
the traditional RGB images. Moreover, in contrast to the
conventional RGB based recognition, the multi-modal nature
of RGB-D images poses additional challenges such as noisy
data and input data dissimilarity. Recent research works
have aimed at addressing these problems [2], [3], [4], [5],
[6], [7], [8], [9], [10], with a particular emphasis towards
the unavailability of large scale training datasets due to
immensely expensive data capturing and annotation. More
importantly, this data deficiency problem has significantly
constrained employing powerful but data-hungry deep learn-
ing algorithms for model training in the RGB-D domain.

Recently, feature representation techniques have also seen
rapid evolution from hand-engineered descriptors to the
methods based on learning algorithms that extract semanti-
cally descriptive feature sets. The most prevalent techniques
are based on the new generation of CNN which have
constituted state-of-the-art performance on a wide range of
applications [11], [12], [13], [14]. Generally, recognition
algorithms in this context rely on the features represented by
the fully-connected layers towards the end of the network.
While these layers carry rich semantic information, they are
too coarse spatially [14] and thus need to be complemented
by expensive pre-processing steps such as data augmentation
and segmentation [11], [12].

We address these problems by formulating an effective
recognition framework based on a deep CNN which has
been pre-trained on a large-scale RGB dataset (i.e. Ima-
geNet [1]). Precisely, we transfer the knowledge of the CNN
model to the domain of depth channel and point cloud
by proposing a novel embedding technique that allows a
seamless integration of these differing domains. We define a
novel Hypercube representation that encodes activations of
all convolutional layers to preserve spatially discriminative
features, in addition to the semantically-informative global
features extracted from the fully connected layer. For multi-
scale feature extraction, we devise a coarse-to-fine scheme
based on pyramidal re-sampling of the convolutional feature
maps. A spatial pyramid pooling scheme is then used at
each pyramid level before feature concatenation to produce
a compact feature representation. The feature vectors from
these pyramids are max pooled to produce a single Hyper-
cube Pyramid descriptor. Finally, these feature vectors from
multiple levels and modalities are given as input to Extreme
Learning Machine classifiers to perform object category and
instance recognition. The core idea is illustrated in Fig. 1. In
summary, our core contributions are four-fold:

1) We propose a Hypercube Pyramid descriptor as a dis-
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Fig. 1. Illustration of the proposed Convolutional Hypercube Pyramid feature extraction. The feature representation is extracted in a coarse-to-fine manner
separately for each RGB, depth and point cloud image. This is done by resampling the convolutional feature maps into three pyramid levels A, B, and C
and concatenate all feature maps at each pyramid level separately (refer text for detailed description). The symbol ⊕ denotes concatenation.

criminative feature representation that encodes multi-
scale, spatially-relevant information for RGB-D object
and instance categorization (Section III-B).

2) We present a novel RGB embedding technique for both
depth maps and point cloud data to allow seamless
transfer of knowledge between different input modal-
ities (Section III-A).

3) We show that a pre-trained CNN on RGB images can
be effectively used for feature extraction from embed-
ded depth data, thereby avoiding the need for large
scale labeled RGB-D data to train a deep network.

4) We propose a feature fusion technique based on Ex-
treme Learning Machines to combine features from
the Hypercube Pyramid and fully connected neurons
leading to a compact but powerful representation for
efficient classification (Section III-C).

II. RELATED WORK

Prior works in RGB-D object recognition utilized channel-
specific hand-engineered feature descriptors for colour and
3D domains such as SIFT [15] and spin images [2]. The
combination of these descriptors is reduced to encoding
using the Bag-of-Words (BoW) method [2] or a kernel-based
representation [3]. Despite their simplicity, these methods
heavily rely on the prior knowledge of the input distribution,
which is not readily available in most real-time robotic

applications (e.g. grasping, navigation). Recent research in
feature learning has opened a new perspective in feature
extraction techniques where the representation of multiple
differing channels can be explicitly learned using a uni-
fied learning algorithm. These include the previously pro-
posed Convolutional K-Means (CKM) [16], Convolutional-
Recursive Neural Networks (CNN-RNN) [5], Hierarchical
Matching Pursuit (HMP) [4], deep Regularized Reconstruc-
tion Independent Component Analysis (R2ICA) [10], Cas-
caded Random Forests (CaRFs) [8] and Localized Deep
ELM (LDELM) [25]. However, these methods do not address
the problem of input dissimilarity between RGB and depth
channels and thus resort to independently learn from each
channel for representation. Besides, these methods learn
models from relatively small training datasets which often
leads to sub-optimal performance.

While collecting and annotating 3D datasets are pro-
hibitively expensive, data from the RGB domain are abun-
dantly available (e.g. Imagenet [1]) which makes the training
of data-hungry algorithms such as CNN more feasible. In
recent works, the pre-trained CNN models have proven to
be powerful for the task they are trained on as well as for
generalizing to other applications [11], [12] without the need
for re-training. However, it is still unclear how feasible it
is to transfer the models across differing modality domains
(e.g. RGB to 3D). Gupta et al. [13] proposed to encode the
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depth channel as the combination of height above ground,
horizontal disparity and angle with gravity (HHA). This em-
bedding method is strictly geocentric and such information is
not always available in object-centric recognition. Schwarz
et al. [7] demonstrated that the transfer learning can be
partially done using a simple colourization scheme of the
depth images. Their approach follows conventional methods
in using the fully connected layers as feature representation,
ignoring the earlier convolutional layers. In contrast, our
proposal motivates knowledge transfer in a novel embedding
scheme for both depth images and point cloud and utilizes
all earlier layers in the deep network.

Following the success of fully connected neurons in recog-
nition tasks, recent studies have shown that convolutional
layers in CNN networks also contain a degree of semantically
meaningful features. Hariharan et al. [14] used the con-
catenated convolutional layers in local regions as pixel-wise
feature representations. Liu et al. [17] proposed guided cross-
layer pooling to extract sub-array of convolutional layers as
local features. In this paper, we consider all convolutional
feature maps as global features and devise a novel extraction
and pooling scheme to encode a compact, discriminative
representation.

III. PROPOSED METHODOLOGY

The overview of our proposed Convolutional Hypercube
Pyramid is illustrated in Fig. 1. Throughout this work,
we deploy the deep pre-trained CNN model from [11]
called VGG-f, which has a similar configuration as that of
the AlexNet [1], with five successive convolutional layers
followed by three fully connected neural layers. In the
first step, our algorithm embeds the depth channel into
the RGB domain to be able to perform feature extraction
directly from the pre-trained deep network (Sec. III-A). After
feed-forwarding each instance through the CNN separately
for each input channel, we define the Hypercube Pyramid
representation with associative re-sampling and feature pool-
ing. Finally, inference is done with multi-class non-linear
Extreme Learning Machine (ELM) classifiers using a late
fusion scheme combining both Hypercube Pyramid features
and the fully connected neural layer activations.

A. Depth Maps and Point cloud Embedding

RGB-D sensors produce two input channels with comple-
mentary and incongruous information. The objective of depth
embedding is to render the depth information as RGB in a
domain adapted manner, in order to allow knowledge transfer
from the pre-trained CNN model. To embed richer depth
information, we use both depth images and point cloud data
to independently render two RGB images. Given a single
channel depth map, d(u), where u = (x, y) and d denotes
pixel-wise depth value at the x-y location, we calculate the
vertical and horizontal derivative approximations by:

Gy = Ky ∗ d(u)
Gx = Kx ∗ d(u),

(1)

Fig. 2. Illustration of the proposed technique for CNN input embedding
a) depth image and b) point cloud object-centric embedding before feature
extraction.

where Ky and Kx are the vertical and horizontal Prewitt
kernels respectively, and ∗ is a two-dimensional convolu-
tion operator. We then compute the gradient magnitude,
Gm =

√
G2
y +G2

x and the gradient direction, Gθ =

arctan(Gy, Gx). The three-channel depth map is constructed
as the concatenation of the original single channel depth map
with the gradient magnitude and direction maps, given by
D(u) = {d(u), Gm, Gθ}. The motivation of this technique
is to encode the texture of the object using the gradient
direction while gradient magnitude explicitly draws sharp
edges at object boundaries. The result of this embedding is
depicted in Fig. 2a which shows that the concatenation of
the three channels captures rich shape information.

For the embedding of the point cloud
p(i) = {a(i), b(i), z(i)}, i ∈ 1, . . . , P , we first project the
point cloud onto its canonical view1 and then apply a colour
map along the direction of the depth axis. The colourized
point cloud is then converted to gray-scale and a colour
transfer algorithm [18] is applied with the corresponding
colour image to approximate the RGB values at each pixel.
This technique transfers the chromatic information from
the source image (RGB) to the target image (gray-scale)
by matching the luminance and texture between these
images. The main advantage of this technique over existing
embedding methods [7], [13] is that the colourization
scheme is closely guided by the RGB images and it is
fully automatic. The depiction of this technique in Fig. 2b
suggests that the resulting image closely resembles the
corresponding RGB channel except that it has additional

1In practice, we define the canonical view as the -27.5◦and 20◦off the
azimuth and elevation angles
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depth and shape information.

B. Convolutional Hypercube Pyramid

Suppose we have a CNN with L convolutional layers
for each RGB, depth and point cloud channels. Follow-
ing a rescaling of the input image to the desired model
input (i.e. m × m; m = 224 for our model) and mean
normalization by subtracting each image from the average
image of the ImageNet [1] database, the feed-forward of the
network consists of consecutive operations of convolution,
pooling, and local contrast normalization (LCN) modules
in the convolutional layers, followed by fully connected
layers towards the end of the network. Most conventional
methods [12], [13], [7] only consider the fully connected
layers for classification purpose since these layers contain
rich semantic information. However, earlier convolutional
layers carry locally-activated features [14], [17], which are
largely ignored in methods using only the fully connected
layers. To encode spatially-relevant information into the
feature representation, we formulate a novel framework to
extract features from all convolutional layers, which are used
together with the holistic features extracted from the fully
connected layers to construct a powerful representation for
object recognition.

Note that our description of Hypercube Pyramid only
considers one input domain (e.g. RGB) since we perform
feature extraction for other domains (embedded depth im-
age and point cloud) using the same procedure. For each
convolutional layer l(i) = {l(1), . . . , l(L)}, the feature maps
activation at the convolutional node can be mathematically
expressed as

a
(l)

i,j,n(l) = σ(
∑
w,h,c

kw,h,c,n(1) ∗ a(l−1)i−w,j−h,c + b
(l)
i,j). (2)

In Eq. 2, σ(.) denotes the Rectified Linear Unit (ReLU) non-
linear function, and b is a bias term. k indicates the three-
dimensional w-by-h-by-c learned filter kernels such that it
convolves the c feature maps at previous layer (l − 1) to
produce n feature maps with dimension i-by-j at the current
layer l. As depicted in Fig. 1, the number of feature maps (i.e.
the depth of the convolutional layers) in each convolutional
layer is n(l) = {64, 256, 256, 256, 256}, resulting in a total
of N = 1088 feature maps.

To convert the feature maps into the Hypercube repre-
sentation that encodes multi-scale information, first each
convolutional feature map is sub-sampled into three pyramid
levels. Specifically, we sub-sample the spatial dimension
(i, j) of each feature map in all convolutional layers into
p(1) = m ×m, p(2) = 2m × 2m and p(3) = 0.5m × 0.5m
respectively using bilinear interpolation in order to capture
distinctive features of the convolutional layers at multiple
scales [15]. Then, we concatenate them together along the
depth dimension separately at each pyramid level to produce
a pyramid of Hypercube descriptors (see Fig. 1 for illustra-
tion). Concretely, our Hypercube at each pyramid level P is

given by

HP = [a
(1)

p,n(1) , a
(2)

p,n(2) , . . . a
(L)

p,n(L) ], (3)

with Hk ∈ Rp(k)×N where k = 1, . . . , P .
This operation produces three Hypercube of different

spatial sizes. Then, in order to enhance the discriminative
characteristics of the descriptors as well as to reduce the
dimensionality of the Hypercube, we perform spatial pyramid
max pooling (SPM) [4] where the Hypercube at each of
the pyramid levels are divided into two (SPM) levels. The
whole Hypercube is used as one cell for SPM level one,
whereas the Hypercube are partitioned into four equi-sized
cells for SPM level two. Then, the pooled feature vectors
for each cell can be calculated simply as the component-
wise maxima over all feature maps within that cell. Note that
the dimension of feature vectors extracted from each cell is
equal to the depth (N ) of the respective Hypercube. This
step generates five equal-dimensional feature vectors which
are then concatenated to create a single vector for each of the
three pyramid levels. Finally, max pooling is performed again
to combine the three feature vectors to produce a compact
discriminative representation Fhc ∈ R5N of the pyramidal
Hypercube for classification.

C. Feature Fusion and Inference Using Extreme Learning
Machines

Existing methods which formulate feature representation
based on CNN directly use the feature vectors [7], [12] or
use simple concatenation of feature vectors from convolution
layers and fully connected neurons, Ffc [14], [17] as input
to the classifiers (e.g. Support Vector Machines) for class
inference. Although these methods are straight-forward in
implementation, simple concatenation for example, comes
at the expense of producing long feature vectors which will
increase the computational complexity at test time, especially
if used in conjunction with more powerful classifiers such as
those with non-linear kernels [19].

Conversely, we would want our classifier input to be
compact in the feature space without sacrificing the dis-
criminative properties of the feature representation. This can
be achieved by employing the Extreme Learning Machines
classifier [19], [20]. We use ELM not only for multi-class
object classification, but also as the feature fusing engine to
combine our Hypercube representation Fhc with the fully
connected neurons Ffc. We investigate both early fusion
and late fusion strategies to identify the most accurate
classification scheme. Assume Fc = {f (i)c , t(i)}, ∈ RD, i =
1, 2, . . . , N represents the feature vectors used as input for
classification, where N is the total number of RGB-D images
with target labels t. In the early fusion, Fc is simply the
concatenation of both Fhc and Ffc (i.e. Fc = [Fhc, Ffc]).
The ELM begins by mapping the feature vectors onto the
hidden layer to output h = σ(

∑N
i=1Winf

(i)
c + bin) ∈ RH ,

where σ(.), Win ∈ RH×D and bin are the piecewise
sigmoidal activation function, randomized orthogonal input
weight matrix and the bias vector, respectively. Subsequently,
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the hidden variables are mapped onto the target labels,
parametrized by the output weight Wout and bias bout which
gives the output variables y = σ(

∑N
i=1Woutt

(i) + bout)β.
Hence, this leaves β as the only parameter to be tuned. The

tuning process is done by optimizing an objective function
of ELM which simultaneously minimizes the norm of the
output weight and the loss between the actual output and the
target labels which can be compactly written as

min
β
JELM =

1

2
‖β‖2F +

λ

2
‖hβ − T‖22. (4)

The closed-form solution of Eq. 4 follows the linear least
square, β = h†T , where h† is the generalized Moore-
Penrose pseudo-inverse of h. Based on orthogonal projection
method, we compute h† as h† = (Iλ−1 + hTh)−1hT or
h† = hT (Iλ−1+hhT )−1 with the condition that hTh is non-
singular (if H > N ) or hhT is non-singular (if H < N ) [20].
Here, I is an identity matrix. The regularization coefficient
λ enhances the generalization ability of ELM by acting as a
solution stabilizer against overfitting [20].

For the case of late fusion, we first independently feed Fhc
and Ffc as input to the ELM classifiers and optimize Eq. 4.
The outputs of this operation are the class probabilities, yhc
and yfc, for the Hypercube Pyramid and fully connected
neurons independently. Then, the concatenation of these new
vectors (i.e. Fc = [yhc, yfc]) is used as an input vector for
another ELM for final classification. The advantages of this
method are two-fold: First, the feature vector dimension at
the final classification stage is reduced to only double the
number of classes. Second, the learning and inference time
of ELM is substantially reduced. Fig. 3 provides a depiction
of the proposed late fusion scheme.

Fig. 3. Illustration of the proposed late fusion scheme to combine
Hypercube Pyramid descriptor Fhc and the fully connected neurons Ffc

for the combined RGB-D channels. ⊕ means concatenation.

IV. EXPERIMENTAL EVALUATION

The presented method is evaluated on the publicly avail-
able Washington RGB-D (WRGB-D) [2] and 2D3D [21]
datasets that are widely used for benchmarking RGB-D
object recognition algorithms. We use the MatConvNet tool-
box [22] from the open-source VLFeat library [23] to get the
pre-trained CNN model as described in Sec. III. Note that for

this paper, we do not fully optimize the parameters of ELM
including the number of hidden neurons H and regularization
coefficient λ. We provide the empirically chosen parameter
values used in all experiments for the sake of reproducibility
of the presented results. Next, we will briefly describe the
datasets, discuss several model ablations and finally compare
our method against several state-of-the-art algorithms.

A. Washington RGB-D Object Dataset

WRGB-D dataset contains 300 household object instances
which were organized into 51 categories. Each instance
was captured using an ASUS Xtion Pro Live camera on
a revolving turntable from three elevation angles (30◦, 45◦

and 60◦). Following the experimental setup of Lai et al. [2],
we conducted two sets of experiments, namely category
recognition and instance recognition. In category recognition,
a “leave-one-instance-out” procedure is carried out over ten
trials. To ensure a fair comparison with other methods, we
use the same training/ testing splits and the cropped images
as suggested by Lai et al. [2]2. For instance recognition, the
images captured at 45◦ for each object instances are used as
validation sets and the training is done on the rest.

1) Model Ablation Study: Firstly, we examine different
modules of our proposed method to find the best-performing
architecture. For that purpose, we compare the early and late
fusion schemes of the Hypercube Pyramid representation as
described in Section III-C, with the baseline of our model
which is the fully connected neurons (FC-6). For category
recognition, we set the parameters {H,λ} as {5000, 1e5}
and {13000, 1e13} for FC-6 and early fusion respectively. As
for the late fusion, the parameters are fixed at {10000, 1e10}
for the first two ELMs to get the class probabilities yhc
and yfc and {1000, 1e6} is used for the final classification.
For instance recognition, {H,λ} are set as {13000, 1e13}
for all subtasks, with the exception of the late fusion final
classification where we set them at {1000, 1e6}.

As depicted in Table I, the combination of our Hypercube
Pyramid with late fusion technique consistently outperforms
the other two alternative modules by a significant margin.
This is mainly credited to the fusion technique which uses the
class probability distribution obtained from different feature
channels as the new feature vectors for classification. The
testing time for late fusion features is only 6.3×10−5 seconds
for one image using MATLAB on a 64-bit, 2.5 GHz machine.
The accuracy for FC-6 and early fusion are similar for
category recognition, which shows that conventional fusion
schemes using a simple concatenation (early fusion) are
less effective for combining the features originating from
different sources. This is probably because of the difficulty
faced by the classifier in suitably weighing the cross-channel
inputs.

To show that the use of point clouds in addition to depth
images improves object recognition accuracy, we conducted
a separate experiment in which we performed object category
recognition using depth images and point clouds in isolation.

2Available: http://rgbd-dataset.cs.washington.edu/

1689



TABLE I
MODEL ABLATION OF THE PROPOSED METHOD FOR OBJECT AND INSTANCE RECOGNITION IN WASHINGTON RGB-D OBJECT DATASET [2]. THE

REPORTED ACCURACY (IN %) IS THE AVERAGE ACCURACY OVER TEN SPLITS.

Category Recognition Instance Recognition 2D3D

Model RGB D RGB-D RGB D RGB-D RGB D RGB-D

FC-6 85.5±2.1 79.6±1.8 87.6±1.7 95.1 48.0 94.6 86.1 88.1 88.5
Hypercube Pyramid
(Early Fusion) 85.9±1.9 81.2±2.1 87.9±1.8 94.8 28.1 86.7 86.0 87.4 89.5
Hypercube Pyramid
(Late Fusion) 87.6±2.2 85.0±2.1 91.1±1.4 95.5 50.2 97.2 90.6 91.6 94.3

Using Hypercube Pyramid representation with the late fusion
scheme, the accuracy of using only the depth images or point
clouds was 79.4% and 70.3% respectively. However, when
both channels were fused together, the accuracy increased
to 85% as depicted in Table I. This indicates that depth
images and point clouds contain complementary information
and augment each other to provide richer 3D information
resulting in improved recognition performance.

For instance recognition, we observe an interesting pattern
in the classification accuracy where the performance drops
when the Hypercube Pyramid representation is combined
with the FC-6 using early fusion. This trend shows that
while the Hypercube Pyramid is powerful for categorical
classification, it is less effective for more fine-grained tasks
such as instance recognition. Moreover, when we individu-
ally classify objects using the Hypercube Pyramid, we obtain
accuracy similar to the FC-6. Nevertheless, the accuracy
increases when the late fusion scheme is used to combine
the features, showing that the two representations contain
complementary information.

2) Comparative Study: To compare the accuracy of our
algorithm with the state-of-the-art, we benchmark against
ten related algorithms including EMK-SIFT [2], Depth
Kernel [3], CNN-RNN [5], CKM [16], HMP [4], semi-
supervised learning (SSL) [6], subset-based deep learning
(subset-RNN) [24], CNN-colourized [7], CaRFs [8] and
LDELM [25]. All results are taken from the original pub-
lications and included in Table II.

The results depict the superiority of our proposed method
which constitutes state-of-the-art for several subtasks for
WRGB-D. For object category recognition, our method
outperforms other methods by a significant margin. Our
method achieves 91.1% accuracy which is 1.7% more than
the closest competitor CNN-colourized [7]. Other methods
which extract features from additional derivative channels
such as surface normals [4] and point cloud surfels [8] do
not perform as good as our three-channel feature extraction.
Additionally, our choice of features substantially reduces
the processing time needed to extract them from depth
and point cloud channels. Our method also outperforms
other methods for channel-specific category recognition. The
accuracy of our RGB-only recognition improves state-of-the-
art by 4.5%, which can be attributed to our novel CNN-
based Hypercube Pyramid representation. The significant

Fig. 4. Confusion matrix for one of the object categorization trials using
the proposed Hypercube Pyramid representation and late fusion scheme on
the Washington RGB-D object dataset [2]. This figure is best viewed with
magnification.

performance improvement for depth-only recognition is an
interesting result. It shows that the features extracted from
a pre-trained CNN on RGB-only images were powerful
enough to achieve high accuracy even when the underlying
data was coming from a different domain. Hence, using
appropriate embedding and rendering techniques, such as
our proposed depth and point cloud embedding (Sec. III-
A), seamless transfer of knowledge from other domains is
possible.

Our technique also outperforms other methods for in-
stance recognition by a large margin, except for depth-
only recognition in which LDELM [25] descriptor wins
with a reported accuracy of 54.3%. While this can be
attributed to the heavily tuned deep networks from different
derivative depth channels, the accuracy is largely inferior
for RGB and RGB-D recognition compared to our proposed
algorithm. We observe that for instance recognition, colour
information provides better discrimination across intra-class
instances while they generally share very similar shapes (e.g.
balls are spherical, soda cans are cylinderical). Nonetheless,
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TABLE II
PERFORMANCE COMPARISON IN TERMS OF RECOGNITION ACCURACY (IN %) OF THE PROPOSED HYPERCUBE PYRAMIDS WITH STATE-OF-THE-ART

METHODS ON WASHINGTON RGB-D OBJECT DATASET [2]. THE ACCURACY IS REPORTED IS AN AVERAGE OVER 10 TRIALS. THE METHODS WITH ?

LABEL INDICATES THE EXPERIMENTS WERE CONDUCTED USING THE SAME TRAINING/ TESTING SPLITS.

Recognition Type Category Recognition Instance Recognition

Method RGB D RGB-D RGB D RGB-D

EMK-SIFT [2] ? ICRA ’11 74.5 ± 3.1 64.7 ± 2.2 83.8 ± 3.5 60.7 46.2 74.8
Depth Kernel [3] ? IROS ’11 77.7 ± 1.9 78.8 ± 2.7 86.2 ± 2.1 78.6 54.3 84.5
CNN-RNN [5] NIPS ’12 80.8 ± 4.2 78.9 ± 3.8 86.8 ± 3.3 – – –
CKM [16] ICRA ’12 – – 86.4 ± 2.3 – – 90.4
HMP [4] ? ISER ’13 82.4 ± 2.1 81.2 ± 2.3 87.5 ± 2.9 92.1 51.7 92.8
SSL [6] ICPR ’14 81.8 ± 1.9 77.7 ± 1.4 87.2 ± 1.1 – – –
subset-RNN [24] Neurocomp.’15 82.8 ± 3.4 81.8 ± 2.6 88.5 ± 3.1 – – –
CNN-colourized [7] ICRA ’15 83.1 ± 2.0 – 89.4 ± 1.3 92.0 45.5 94.1
CaRFs [8] ? ICRA ’15 – – 88.1 ± 2.4 – – –
LDELM [25] ? DICTA ’15 78.6 ± 1.8 81.6 ± 0.7 88.3 ± 1.6 92.8 55.2 93.5
Hypercube Pyramid ? this work 87.6 ± 2.2 85.0 ± 2.1 91.1 ± 1.4 95.5 50.2 97.2

Fig. 5. Selected outliers for a) WRGB-D [2] (mushroom misclassified as
garlic) b) 2D3D [21] (drink carton misclassified as can).

this problem can be effectively mitigated by considering
colour and depth features in unison. Figure 4 visualizes
the confusion matrix for one of the category recognition
trials on the WRGB-D dataset. The strongest off-diagonal
element shows the mis-classification of mushroom which is
labelled as garlic. As depicted in Fig. 5a, this is due to
both instances having similar appearance and shape which
makes the recognition task difficult even for human experts.
In addition, the category mushroom has a very low number of
examples in the dataset, which makes it hard for the classifier
to construct a good model for inference. We conjecture that
the performance can be further improved by performing
data augmentation techniques such as jittering [11], [12] to
increase the number of training samples and the accuracy is
taken as an average prediction from all augmented images.

B. 2D3D Object Dataset

In this experiment, we examine the performance of the
proposed Hypercube Pyramid on 2D3D dataset [21]. Con-
trary to the WRGB-D, this dataset has a relatively lower
number of instances (163 objects organized into 16 cate-
gories) and consists of highly textured common objects (e.g.
drink cartons, computer monitors). We carefully replicate the
procedure set forth by Browatzki et al. [21] to ensure a fair
comparison with other state-of-the-art methods. Specifically,
we combine the classes fork, knife and spoon into a joint
class of silverware and exclude phone and perforator due to

Fig. 6. Confusion matrix for object categorization using our proposed
Hypercube Pyramid on the 2D3D object dataset [21]. Superior recognition
accuracy is recorded as indicated by the strong diagonal entries.

their small number of examples. This makes a final dataset
of 156 instances and 14 classes for category recognition. For
evaluation, six instances per class are randomly chosen for
training. Validation is done on the remaining instances, while
only 18 RGB-D frames per instance are randomly selected
for both sets. However, for categories that have less than six
instances (e.g. scissors), we ensure that at least one instance
is used in the validation set. The parameters of ELM for
this dataset are set as follows: {H,λ} = {5000, 1e5} for
FC-6 and the same {H,λ} = {10000, 1e10} are used for
early fusion and for class probabilities generation for late
fusion. As the number of categories is very small, we set the
parameters as {70, 2} for the final classification ELM.

The depiction of model ablation and comparison to other
existing methods are reported in Table I and Table III
respectively. In Table I, the results for FC-6 and early fusion
are comparable, which supports our hypothesis made in
Section IV-A.1 regarding the low effectiveness of simple con-
catenation for object recognition. However, when late fusion
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is performed, the accuracy shows significant improvement
for RGB, depth, and combined channels which confirms the
efficacy of the proposed method. Without fully optimizing
the parameters of the ELM classifiers, the accuracy is higher
than previous state-of-the-art methods (Table III). The closest
competitor, subset-RNN, which is based on expensive subset
generation and recursive neural network at feature extraction,
lags 1.5% from the performance of our proposed Hypercube
Pyramid. We credit this result mainly to the effectiveness of
the depth and point cloud embedding which is also reflected
in the higher accuracy achieved by the depth-only recogni-
tion compared to the RGB-only recognition. A sample off-
diagonal entry of confusion matrix (Fig. 6) is depicted in
Fig. 5b for qualitative analysis of a mis-classification case
for this dataset.

TABLE III
PERFORMANCE COMPARISON IN TERMS OF RECOGNITION ACCURACY

(%) OF THE PROPOSED HYPERCUBE PYRAMIDS WITH

STATE-OF-THE-ART METHODS ON 2D3D OBJECT DATASET [21].

Methods RGB D RGB-D

2D+3D [21] ICCVW ’11 66.6 74.6 82.8
HMP [4] ISER ’13 86.3 87.6 91.0
R2ICA [10] ACCV ’14 87.9 89.2 92.7
Subset-RNN [24] Neurocomp.’15 88.0 90.2 92.8
Hypercube Pyramid this work 90.6 91.6 94.3

V. CONCLUSIONS
This paper approached RGB-D object recognition problem

via a novel CNN-based Hypercube Pyramid representation
which utilizes all convolutional layers to construct a powerful
representation for recognition. We presented a novel fusion
scheme to combine Hypercube Pyramid features with the
activations of the fully connected layer, leading to a compact
representation and fast inference scheme. We also devise
an effective depth and point cloud embedding technique to
allow seamless knowledge transfer between the color and
depth domains. The performance of the presented method
is examined on two benchmark RGB-D datasets, where
it consistently outperformed state-of-the-art methods by a
significant margin.
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