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Abstract. Palmprint is emerging as a new multi-modal biometric for
human recognition. Multispectral palmprint images captured in the vis-
ible and infrared spectrum not only contain the superficial structure
of a palm, but also the underlying structure of veins; making them a
highly discriminating person identifier. This study comparatively ana-
lyzes multidirectional representations for multispectral palmprint recog-
nition which show promising results. Comprehensive experiments for
both identification and verification scenarios are performed on three
public datasets. The accuracies of state-of-the-art clearly indicate the
viability of multidirectional coding methods for multispectral palmprint
recognition.

1 Introduction

The information present in a human palm has an immense amount of poten-
tial for biometric recognition. Information visible to the naked eye includes the
principal lines, the wrinkles and the fine ridges which form a unique pattern for
every individual [13]. These superficial features can be captured using standard
imaging devices. High resolution scanners capture the fine ridge pattern of a
palm which is generally employed for latent palmprint identification in foren-
sics [3]. The principal lines and wrinkles acquired with low resolution sensors are
suitable for security applications like user identification or authentication [12].

Additional information present in the human palm is the subsurface vein pat-
tern which is indifferent to the palm lines. Such features cannot be easily acquired
by a standard imaging sensor. Infrared imaging can capture subsurface features
due to its capability to penetrate the human skin. The superficial and subsurface
features of a palm have been collectively investigated under the subject of ‘multi-
spectral palmprint recognition’. Using Multispectral Imaging (MSI), it is possible
to capture images of an object at multiple wavelengths of light, in the visible
spectrum and beyond. A monochromatic camera under spectrally varying illu-
minations can acquire multispectral palm images. Figure 1 shows palm images
captured at three different wavelengths. The availability of such complementary
features (palm lines and veins) makes palmprint suitable for recognition where
user cooperation is affordable, e.g., at secure access gates, workplace attendance
and identification records.
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(a) Lines (470nm) (b) Veins (880nm) (c) Both (660nm)

Fig. 1. Examples of palmprint features in multiple bands. Three bands of a multispec-
tral image captured using a contact based sensor. (a) Palm lines captured in the visible
range. (b) Palm veins captured in the near infrared range. (c) A combination of the
line and vein features at intermediate wavelengths.

The multi-modal nature of multispectral palmprints requires robust feature
extraction methods. This work compares state-of-the-art orientation codes for
multispectral palmprint recognition. Section 2 briefly describes the concept of ori-
entation coding algorithms with details of the Contour Code (ContCode) [4],
the Competitive Code (CompCode) [6], the Ordinal Code (OrdCode) [8] and
the Derivative of Gaussian Code (DoGCode) [9]. Section 4 presents the multi-
spectral palmprint verification and identification in various experimental set-
tings and compares the performance of the state-of-the-art. These experiments
are performed on three publicly available multispectral palmprint databases
i.e. PolyU-Multispectral Palmprint Database, PolyU-Hyperspectral Palmprint
Database and CASIA Multispectral Palmprint Database described in Sect. 3.
Section 6 ends the paper with conclusions.

2 Multidirectional Palmprint Encoding

Palmprint recognition approaches can be categorized into line-like feature detec-
tors, subspace learning methods and texture based coding techniques [5]. These
three categories are not mutually exclusive and their combinations are also pos-
sible. Line detection based approaches commonly extract palm lines using edge
detectors [2]. Recognition based solely on palm lines proves insufficient due to
their sparse nature and the possibility of different individuals having highly sim-
ilar palm lines [11]. Although, line detection can extract palm lines effectively,
it may not be equally useful for the extraction of palm veins due to their low
contrast and broad structure. A subspace projection captures the local and/or
global characteristics of a palm by projecting to the most varying [7] or the most
discriminative [10] dimensions. The palmprint subspace representations are not
effective compared to the state-of-the-art techniques. The main reason is that
subspaces learned from misaligned palms are unlikely to generate accurate rep-
resentation of each identity.
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2.1 Orientation Coding

Orientation codes extract and encode the orientation of lines which have shown
state-of-the-art performance in palmprint recognition [13]. In the generic form
of orientation coding, the response of a palm to a bank of directional filters is
computed such that the resulting directional subbands correspond to specific
orientations of line. Then, the dominant orientation index from the directional
subbands is extracted at each point to form the orientation code. Orientation
codes can be binarized for efficient storage and fast matching unlike other rep-
resentations which require floating point data storage and computations.

Derivative of Gaussian Code (DoGCode) [9] is a compact representation
which only uses vertical and horizontal gaussian derivative filters to extract
feature orientation of a palmprint image, and then encodes the filter responses
into binary code. The horizontal and vertical derivatives of 2D Gaussian filters
used in DoGCode are given as

Fx(x, y : σ) = − x

2πσ4
e

(
− x2+y2

2σ2

)
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where σ is the scale of the filter.

Ordinal Code (OrdCode) [8] emphasizes the ordinal relationship of lines by
comparing mutually orthogonal filter pairs to extract the feature orientation at a
point. It uses six 2D elliptical Gaussian filters for filtering the palmprint image.
The 2D elliptical Gaussian filter used in the OrdCode are defined as

F(x, y : θ, δx, δy) = e
−( x cos θ+y sin θ

δx
)2−

(
−x sin θ+y cos θ

δy

)2
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where (δx, δy) are the scales of the orthogonal Gaussian filters oriented at (θ, θ+
π/2). The ratio δx/δy is kept high to get an elliptical filter response.

Competitive Code (CompCode) [6] employs a directional bank of Gabor
filters to extract the orientation of palm lines. The 2D Gabor filters for multidi-
rectional filtering of palm images are given as

F(x, y : θ, ω, κ) = − ω√
2πκ

e
ω2

8κ2 (4(x cos θ+y sin θ)2+(−x sin θ+y cos θ)2)
(
eιωx − e− κ2

2

)

(4)
where ω = κ/σ is the radial frequency and θ is the orientation of the Gabor
filter. The parameter κ =

√
2 log 2 2δ+1

2δ−1 , where δ is the bandwidth of the filter
response.
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Contour Code (ContCode) [4] uses pyramidal-directional filter banks to
extract the orientation of palmprint features and uses a binary hash table encod-
ing for efficient storage and matching. The pyramidal bandpass filter captures
the details in the palm at a single scale. The pyramidal filtered component is
subsequently convolved with a 2D directional filter bank of sinc filter.

F(x, y : θ) = Pf (x, y) ∗ 1√
2

sin(x : θ)
x

sin(y : θ)
y

, (5)

where Pf (x, y) is the pyramidal filter. The combination of pyramidal and direc-
tional filter decomposition stages robustly capture line like features from palm-
prints.

2.2 Binary Encoding and Matching

Orientation codes can be integer coded according to the maximum (or minimum)
filter response for directional subband at orientation θ

C(x, y) = arg min
i

I(x, y) ∗ F(x, y : θ) , (6)

where θ = i π
K where K is the total number of orientations. For storage and

matching, orientation codes can be binarized and stored in efficient structures
such as one proposed in [4]. All methods in this paper use the same binary
encoding and matching scheme for a fair comparison.

3 Multispectral Palmprint Databases

Experiments are performed on the PolyU-MS1, PolyU-HS2 and CASIA-MS3

palmprint databases. All databases contain low resolution (<150 dpi) palmprint
images. Several samples of each subject were acquired in two different sessions.
Detailed specifications of the databases are given in Table 1.

The PolyU-HS database was collected with the aim to find the minimum
number of bands required for designing a multispectral palmprint recognition
system rather than utilizing the complete set of hyperspectral bands. The num-
ber of bands of the PolyU-HS database were reduced from 69 to 4 according
to the band selection method proposed in [1]. The four most informative bands
were 580 nm, 620 nm, 760 nm and 940 nm.

1 PolyU Multispectral Palmprint Database http://www.comp.polyu.edu.hk/
∼biometrics/MultispectralPalmprint/MSP.htm.

2 PolyU Hyperspectral Palmprint Database http://www4.comp.polyu.edu.hk/
∼biometrics/HyperspectralPalmprint/HSP.htm.

3 CASIA Multispectral Palmprint Database http://www.cbsr.ia.ac.cn/
MS Palmprint Database.asp.

http://www.comp.polyu.edu.hk/~biometrics/MultispectralPalmprint/MSP.htm
http://www.comp.polyu.edu.hk/~biometrics/MultispectralPalmprint/MSP.htm
http://www4.comp.polyu.edu.hk/~biometrics/HyperspectralPalmprint/HSP.htm
http://www4.comp.polyu.edu.hk/~biometrics/HyperspectralPalmprint/HSP.htm
http://www.cbsr.ia.ac.cn/MS_Palmprint_Database.asp
http://www.cbsr.ia.ac.cn/MS_Palmprint_Database.asp
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Table 1. Specifications of the PolyU-MS, PolyU-HS and CASIA-MS databases.

Database PolyU-MS PolyU-HS CASIA-MS

Sensor type contact contact non-contact

Identities 500 380 200

Samples per identity 12 11–14 6

Total samples 6000 5240 1200

Bands per sample 4 69 6

Wavelength(nm) 470, 525,
660, 880

420–1100
(10 nm steps)

460, 630, 700, 850,
940, White

Table 2. Individual performance of bands in PolyU-MS, PolyU-HS and CASIA-MS
database.

PolyU-MS

Band GAR(%) EER(%)

470 nm 99.94 0.0784
525 nm 99.98 0.0420
660 nm 99.99 0.0242
880 nm 99.90 0.1030

PolyU-HS

Band GAR(%) EER(%)

580 nm 99.56 0.3003
620 nm 99.93 0.0779
760 nm 99.67 0.2475
940 nm 99.83 0.1495

CASIA-MS

Band GAR(%) EER(%)

460 nm 88.95 2.9246
630 nm 87.79 3.9065
700 nm 57.35 9.7318
850 nm 87.45 4.1398
940 nm 90.73 3.4769

4 Multispectral Palmprint Recognition

The multispectral palm regions in each band are downsampled to 32 × 32 pixels
using bi-cubic interpolation. Then, features are extracted using four state-of-the-
art methods for subsequent use in recognition experiments.

4.1 Verification Experiments

Verification experiments are performed on PolyU-MS, PolyU-HS and CASIA-
MS databases adapting the protocol of [13], where session based experiments are
structured to observe the recognition performance. The evaluation comprises five
verification experiments to test different techniques. The experiments proceed
by matching

Exp.1: individual bands of palm irrespective of the session.
Exp.2: multispectral palmprints acquired in the 1st session.
Exp.3: multispectral palmprints acquired in the 2nd session.
Exp.4: multispectral palmprints of the 1st session to the 2nd session.
Exp.5: multispectral palmprints irrespective of the session (all vs. all).

In all experiments, the ROC curves, which depict the False Rejection Rate
(FRR) versus the False Acceptance Rate (FAR) are reported. The Equal Error
Rate (EER), and the Genuine Acceptance Rate (GAR) at 0.1 % FAR are also
summarized to compare performance of the state-of-the-art techniques.
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Fig. 2. Exp.1: ROC curves of ContCode on individual bands

Experiment 1: Band Discriminant Capability. This experiment compares
the relative discriminant capability of individual bands in different databases. We
compare the performance of individual bands of the PolyU-MS and CASIA-MS
database using ContCode. Figure 2 shows the ROC curves of the individual bands
and Table 2 lists their EERs. In the PolyU-MS database, the 660 nm band gives
the best performance indicating the presence of more discriminatory features.
A logical explanation could be that the 660 nm wavelength partially captures
both the line and vein features making this band relatively more discriminative.
In the PolyU-HS database, the 620 nm and 940 nm have the lowest errors fol-
lowed by 760 nm and 580 nm. In CASIA-MS database, the most discriminant
information is present in the 940 nm, 850 nm, 630 nm and 460 nm bands which
are close competitors.

Experiment 2: Verification in the 1st Session This experiment analyzes the
variability in the palmprint data acquired in the 1st session. Figure 3 compares
the ROC curves of the ContCode with three other techniques on all databases.
It is observable that the CompCode and the OrdCode show intermediate perfor-
mance close to ContCode. The DoGCode exhibits a drastic degradation of accu-
racy implying its inability to sufficiently cope with the variations of CASIA-MS
data. Overall, the CompCode and ContCode perform better on both databases
while the latter performs the best.

Experiment 3: Verification in the 2nd Session This experiment analyzes
the variability in the palmprint data acquired in the 2nd session. This allows for
a comparison with the results of Exp.2 to analyze the intra-session variability.
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Fig. 3. Exp.2: Matching palmprints of 1st session.
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Fig. 4. Exp.3: Matching palmprints of 2nd session.
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Fig. 5. Exp.4: Matching palmprints of the 1st session to the 2nd session. The verification
performance is low relative to Exp.2 and Exp.3. However, the performance degradation
of the proposed ContCode is much less than the other techniques on both databases,
indicating its robustness to image variability.

10
−4

10
−2

10
0

10
2

0

0.2

0.4

False Acceptance Rate (%)

F
al

se
 R

ej
ec

tio
n 

R
at

e 
(%

)

PolyU−MS

DoGCode
OrdCode
CompCode
ContCode

10
−4

10
−2

10
0

10
2

0

1

2

3

False Acceptance Rate (%)

F
al

se
 R

ej
ec

tio
n 

R
at

e 
(%

)

PolyU−HS

DoGCode
OrdCode
CompCode
ContCode

10
−4

10
−2

10
0

10
2

0

5

10

15

False Acceptance Rate (%)

F
al

se
 R

ej
ec

tio
n 

R
at

e 
(%

)

CASIA−MS

DoGCode
OrdCode
CompCode
ContCode

Fig. 6. Exp.5: Matching palmprints irrespective of the acquisition session.

Therefore, only the palmprints acquired in the 2nd session are matched. Figure 4
compares the ROC curves of all techniques. The small improvement in verifica-
tion performance on the images of 2nd session can be attributed to the better
quality of images and increased user familiarity with the acquisition system.

Experiment 4: Verification of 2nd Session from 1st Session This experi-
ment mimics a verification scenario which incurs variation in image quality due
to sensor aging or subject behavior over time. It analyzes the inter-session vari-
ability of multispectral palmprints. Therefore, all images from the 1st session are
matched to all images of the 2nd session. Figure 5 compares the ROC curves of
the techniques on all databases. Note that the performance of all techniques is
relatively lower for this experiment compared to Exp.2 and Exp.3 because this
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Table 3. Summary of verification results for Exp.2 to Exp.5

PolyU-MS

DoGCode OrdCode CompCode ContCode

Exp.2 EER(%) 0.0400 0.0267 0.0165 0.0133

GAR(%) 99.96 99.99 99.99 100.00

Exp.3 EER(%) 0.0133 0 0.0098 0

GAR(%) 99.99 100.00 100.00 100.00

Exp.4 EER(%) 0.0528 0.0247 0.0333 0.0029

GAR(%) 99.96 99.98 99.99 100.00

Exp.5 EER(%) 0.0455 0.0212 0.0263 0.0030

GAR(%) 99.97 99.99 99.99 100.00

PolyU-HS

DoGCode OrdCode CompCode ContCode

Exp.2 EER(%) 0.0398 0.0130 0.0261 0.0130

GAR(%) 99.97 99.99 99.99 99.99

Exp.3 EER(%) 0.1912 0.0128 0.0128 0.0045

GAR(%) 99.79 99.99 99.99 100.00

Exp.4 EER(%) 1.1530 0.1598 0.0830 0.0866

GAR(%) 97.56 99.80 99.93 99.92

Exp.5 EER(%) 0.8150 0.1043 0.0626 0.0596

GAR(%) 98.42 99.88 99.96 99.96

CASIA-MS

DoGCode OrdCode CompCode ContCode

Exp.2 EER(%) 1.000 0.1667 0.0140 0

GAR(%) 98.00 99.67 100.00 100.00

Exp.3 EER(%) 0.6667 0.1667 0.1667 0.0011

GAR(%) 98.50 99.83 99.83 100.00

Exp.4 EER(%) 3.8669 1.2778 0.6667 0.2778

GAR(%) 87.70 97.39 97.72 99.61

Exp.5 EER(%) 2.8873 0.8667 0.4993 0.2000

GAR(%) 92.01 98.37 98.60 99.76

is a difficult scenario due to the intrinsic variability in the human behavior over
time. However, the drop in performance of ContCode is the minimum. Therefore,
it is fair to deduce that ContCode is relatively robust to the image variability
over time.

Experiment 5: All-vs-All Verification. This experiment evaluates the over-
all verification performance by combining images from both sessions. All images
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Fig. 7. CMC curves for the identification experiment. Note that ContCode has an
average rank-1 recognition rate of 100 % on the PolyU-MS database.

Table 4. Comparison of rank-1 recognition rate and standard deviation on all data-
bases.

Method PolyU-MS (%) PolyU-HS (%) CASIA-MS (%)

DoGCode [9] 99.97±0.04 99.93±0.05 95.08±0.75

OrdCode [8] 99.93±0.05 98.50±0.28 99.02±0.11

CompCode [6] 99.97±0.03 99.99±0.01 99.52±0.11

ContCode [4] 100.0±0 99.98±0.03 99.88±0.08

in the database are matched to all other images, irrespective of the acquisition
session which is commonly termed as an “all-versus-all” experiment. Figure 6
compares the ROC curves of all techniques. Similar to the previous experiments,
the ContCode consistently outperforms all other techniques.

The results of Exp.2 to Exp.5 are summarized in Table 3 for the all databases.
The ContCode consistently outperforms the other methods in all experiments.
Moreover, CompCode is consistently the second best performer except for very
low FAR values in Exp.4 and Exp.5 on the PolyU-MS database (see Fig. 5 and
Fig. 6). It is also interesting to note that the OrdCode performs better than the
DoGCode on all databases.

5 Identification Experiments

Palmprint identification is carried out in 5-fold cross validation experiment and
the Cumulative Match Characteristics (CMC) curves are reported alongside the
Rank-1 identification rates. The identification rates are averaged over the five
folds. In each fold, one multispectral palmprint image per subject is randomly
selected to form the gallery and the remaining images are considered as probes.
This means that the identification is based on a single multispectral image for
each subject in the gallery. This protocol is followed for all databases.

5.1 Experiment 1: Identification Experiment

The CMC curves on all databases are given in Fig. 7 and the identification results
are summarized in Table 4. The ContCode achieved an average identification rate
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of 99.88% on the CASIA-MS database, 99.91 % on the PolyU-HS database and
100% on the PolyU-MS database. The ContCode clearly demonstrates better
identification performance in comparison to state-of-the-art techniques.

6 Conclusion

In this study, state-of-the-art orientation based coding algorithms were compared
for multispectral palmprint recognition. Various experiments were designed to
cater for sessional affects in multispectral palmprint recognition. The results
indicate that the ContCode is most accurate, followed by CompCode, OrdCode
and DoGCode in both verification and identification experiments. Overall, the
orientation coding techniques show promising results for extracting multimodal
features of a palmprint. The MATLAB code of all techniques including the
experiments conducted in this work is available at www.sites.google.com/site/
zohaibnet/Home/codes.
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