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Abstract—Detecting military vehicles and distinguishing them
out from non-military vehicles is a significant challenge in
the defence sector. Detection of military vehicle could help to
identify enemy’s move and hence, build early precautionary
measures. Recently, many deep learning based techniques have
been proposed for vehicle detection purpose. However, they are
developed using datasets that are not useful if military specific
vehicle training and detection is required. Hyper-parameters
in those techniques are not tuned to entertain low-altitude
aerial imagery. We aim to develop state-of-the-art deep learning
framework to detect particularly military vehicle along with
other standard non-military vehicles. The major bottleneck in
the application of deep learning frameworks to detect military
vehicles is the lack of available datasets. In this context, we
prepared a dataset of low-altitude aerial images that comprises of
real data (taken from military shows videos) and toy data (taken
from YouTube videos). Our dataset is categorized into three main
types i.e. military vehicle, non-military vehicle and non-vehicle.
We employed state-of-the-art object detection algorithms to dis-
tinguish military and non-military vehicles. Specifically, the three
deep architectures used for this purpose include faster region-
based convolutional neural networks (Faster RCNN), recurrent
fully convolutional neural networks (R-FCN), and single shot
multibox detector (SSD).We observed the impact on results by
increasing training data using SSD architecture. We also did
comparative analysis of three state-of-the-art architectures by
increasing training data and observing it’s impact on results. The
experimental results show that the training of deep architectures
using the customized/prepared dataset allows to recognize seven
types of military and four types of non-military vehicles. It
can handle complex scenarios by differentiating vehicle from
it’s surroundings objects. We report the mean average precision
(MAP) and weighted average precision (WAP) obtained using
the three adopted architectures with Faster R-CNN giving the
highest WAT of around 62.79 % for military vehicle category
with 380,530 iterations (3 epochs).

Index Terms—vehicle detection, vehicle classification, surveil-
lance, military vehicle, security, military vehicle detection

I. INTRODUCTION

Detection and localization of Military vehicles is vital
for applications like surveillance, security, tracking tasks etc.
These applications require accurate identification and tracking
of vehicles so that military vehicles can be easily distinguished
from non-military vehicles in an image. To reduce the work
load of security and tracking experts, an automatic military
vehicle detection system needs to be constructed. Previous
techniques specifically focus on general vehicle detection
in aerial images. Vehicle detection in VHR remote sensing
images is vital for both in civilian and military surveillance

purposes. Vehicle detection from aerial images has got at-
tention worldwide [6, 7, 14-16]. It is challenging due to
small size and variable orientation of vehicles. Aerial images
with complicated backgrounds (Figure 1) increase difficulties
in detection and classification. Earlier, vehicle detection was
performed by applying techniques composed of hand-crafted
features and a classifier or a cascade of classifiers within a
sliding window approach [2, 6, 7]. Previous sliding window
search approach and shallow-learning-based features [1, 17-
21] based methods were mostly used for vehicle detection.
The approach presented in [6] detects vehicles with two
attributes (orientation and type) on aerial images. To detect
location of vehicles, it adopts AdaBoost classifier in a soft-
cascade structure and fast binary detector using ICFs. Later for
classification of orientations and type of vehicle, HOG features
were used. This lead to effective detection performance.

Computing convolutional features separately for every can-
didate window is expensive [4]. Afterwards, convolutional
neural networks (CNNs) were employed to classify candidate
regions [1, 5]. Recently, R-CNN based detection methods
have performed well in nature scene images [22]. A fully
convolutional RPN is employed to generate object-like regions
in Faster R-CNN, and candidate regions are inferred by a
classifier after RPN. Performance of Faster R-CNN is superior
to that of traditional methods (sliding windows based) because
of fast speed and feature representation. Computational cost
for training and testing was significantly reduced by Fast R-
CNN [4] and Faster R-CNN [9]. They achieved good results
on common detection benchmark datasets. In these techniques,
only one convolutional feature map is shared for entire image
rather than computing convolutional features separately. But
performance of these techniques depend on object proposal
methods. These detectors and their respective object proposals
methods were developed for datasets that were different from
aerial images.

Due to less training data, over-fitting problem can occur
in region CNN-based methods for vehicle detection in aerial
imagery. Faster R-CNN’s poor performance is due to two
reasons. Firstly due to coarse feature maps, RPN in Faster R-
CNN is not suitable to detect small vehicles. Secondly due to
less hard negative examples , classifier after RPN is un-able to
differentiate vehicles and clutter backgrounds properly. After
wards, SSD [32] was introduced. Its meta-architecture solves
object recognition problem. A feed-forward convolution net-



(a) Military Vehicles

(b) Non-Military Vehicles

Fig. 1. Low-altitude aerial images of real vehicles taken from RPTLY youtube videos [42] and our collected dataset.

work is employed to generate collection of fixed-size bounding
boxes. Object class presence in each is scored. Predictions
from multiple feature maps having different resolutions, is
combined by this network. In this way it is able to handle
objects of varying dimensions. SSD avoids proposal generation
and saves computational time by encapsulating process into a
single network.

In this paper, we propose a military vehicle dataset. It is
composed of 13 classes which are sub-divided in 2 categories
(Vehicle and Non-Vehicle). Vehicle Category is further sub-
divided into military and non-military. We also investigate
the applicability of SSD for detecting small objects in aerial
images. Contribution of our work includes dataset which is
composed of military and non-military vehicles.

Fig. 2. Vehicles from PASCAL VOC 2012 dataset [3].

This paper is organized as follows: Section II discusses
available datasets. Preparation of dataset is explained in Sec-
tion III. Section IV and V focus on experimental setup and
results. Analysis in Section VI. Finally, Section VII concludes
the paper.

Fig. 3. Two images from OIRDS [40].

II. AVAILABLE DATASET

This section provides an overview of available dataset.

A. Datasets for vehicle detection

Modern approaches in deep learning need annotated training
data. In addition, comparison is required to establish the most
suitable approach. Table I represents summary of datasets.

Our focus is on vehicle detection and more specifically on
military vehicle detection. Dataset from Pascal VOC challenge
[3], contains everyday life objects. The Pascal VOC have
dataset of 20 classes split into train, validation and test
sets. Some vehicles from PASCAL VOC are shown figure 2.
ImageNet dataset [34] have more than 14 million images and
it is generally used for object detection purposes. But it is not
designed to accomodate aerial images required for surveillance
and security purposes.

As in [35, 36], the databases presented are different from the
task we performed. Available vehicle databases mostly contain
vehicles with ground view (e.g. INRIA Car dataset [37]). Work

TABLE I
SUMMARY OF EXISTING DATABASES FOR OBJECT DETECTION
Database Classes | # Instances Folds # Images
PASCAL [3] 20 train / val / test >10,000
ImageNet [34] 21841 train / val / test | >14,000,000
OIRDS [40] 4 No cut 900
VEDAI [8] 9 2950 train / test 1268
3K Vehicle Detection [6] 2 14,235 No cut 20
Our Proposed Dataset 13 23,097 train / val 15086




(a) Input Image : Containing vehicles

(b) Output Image : Recognition of vehicles

Fig. 4. System performs localization and detection of real vehicles in low-altitude aerial images taken from our compiled dataset.

on target detection done in ([38, 39]) using aerial imagery but
dataset is not publicly available.

Publically available dataset OIRDS (Overhead Imagery Re-
search DataSet) [40] contains 180 vehicles in 900 annotated
images. Few images are shown figure 3. It contains five classes
of vehicles (‘truck’, ‘pick up’, ‘car’, ’van’ and ‘unknown’).
However, no evaluation protocol is defined for this database
and images are not having aerial view of vehicles that is
required for our dataset.

III. DATASET PREPARATION
A. Challenges

Images in datasets, e.g. Pascal VOC2007 [3], in general
are composed of only one or few objects that occupy a high
portion of the image as compared to aerial images. Aerial
Images may contain multiple objects with varying sizes and
pixel-wise area in image. Currently the publically available
datasets like DLR 3K Munich Vehicle Aerial Image Dataset
[6] and the Vehicle Detection in Aerial Imagery (VEDAI)
dataset [8], doesn’t fulfill our requirement. In Figure 5, we
show a representation of vehicles under different conditions.
We propose a dataset that is composed of low-altitude aerial
images containing military vehicles and non-military vehicles
with varying backgrounds. All experiment are performed on
our proposed dataset.

B. Data Collection

Our generated dataset is composed of images with several
types of vehicles. We have 13 classes in total. 11 classes
fall in Vehicle category while 2 classes fall in non-vehicle
category. Vehicle category further splits in Military and non-
military vehicle category Images are collected from YouTube
videos. Our dataset is composed of Real Vehicle and Toy
Vehicle. Real vehicle dataset was generated through RPTLY
YouTube videos [42] and through publically available EPFL
Dataset [43]. While Toy vehicle dataset was generated from
videos by RC Military toy YouTube channel [44] and other
channels [45-46]. Our dataset is composed of Images with
various resolutions having top-view angle (low-altitude) of

vehicles. Images have few categories of military vehicles too in
clutter environment. These conditions help to more accurately
identify type and category of vehicle.

Table II shares some details w.r.t our proposed dataset
(composed of low-altitude aerial images).

TABLE I
VARYING DIMENSIONS DETAILS AND IMAGES COUNT IN OUR PROPOSED
DATASET.

Details of our proposed dataset

# Images 15086 ( 11733 Toy images + 3353 Real vehicle images )

Dimensions 1280%*720, 1280%692, 450*300, (EPFL Data set) 360*288

Shape Resizer 1024 * 600

C. Data Annotation

Starting from videos, containing military vehicle, we used
VOTT tool [47] to annotate it frame by frame in-order to
generate our proposed dataset. It generated annotations in
PASCAL VOC format for 11 types of vehicles. Out of total
15086 Images in our dataset, 11733 are extracted from Toy
video and 3353 are from Real videos. The collected data
set is annotated for two categories of vehicles (Military and
non-military). Images in our dataset contains multiple objects
belonging to multiple classes. Number of each type of vehicles
in our training dataset are shown in Table III. We have 13
classes which are split in 2 main categories. Vehicle and non-
Vehicle Category. There are total 15086 images that were
manually labeled all images with bounding box and type.

IV. EXPERIMENTAL SETUP

In this section, we first focus on architectural configurations.
Afterwards we briefly introduced details of our dataset. Finally
we discuss implementation details of our experiments.

A. Architectural configuration

1) Feature extractors: For our experiments, we considered
three feature extractors. Resnet-101 [48], which won compe-
titions of ILSVRC and COCO 2015 (classification, detection
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Fig. 5. Aerial images were taken from toy video of RC youtube channel [44-45].

and segmentation). We also used Inception v2 [49], which set
the state of the art in the ILSVRC 2014 classification and
detection challenges. Its network employs ’Inception units’ to
increase the depth and width of a network without increasing
computational cost. Recently, Inception Resnet (v2) in [50],
combines the optimization benefits by residual connections
with the computation efficiency of Inception units.

2) Number of proposals: Number of region proposals to be
sent to the box classifier can be choosed at test time in Faster
R-CNN and R-FCN. In experiments, we used 300 number of
proposals.

3) Location loss: For all of our experiments, following [4,
9, 32], we used the Smooth L1 [51] loss function.

4) Training and hyper parameter tuning: For Faster RCNN
we used batch size of 2 (because models were trained using
images with different dimensions). For SSD and R-FCN, we
used batch size of 4 (we had to reduce the batch size for
memory reasons). Learning rate for Faster RCNN and RFCN
was 0.0003 while that in SSD was 0.004 For Faster RCNN
and RFCN, in configuration settings for Images resizing,
min_dimension and max_dimension was set to 600 and 1024
respectively. While for SSD, fixed_shape_resizer section was
added and it’s parameters height and width was set to 600 and
1024 respectively.

B. Low-Altitude Aerial Imagery Datasets

Experiments are performed on our proposed dataset that is
shown in figure 6. Images in our dataset contain different sizes
of objects with varying backgrounds. Main characteristics of
our dataset is summarized in Table II. It comprises of real
data videos and toy data videos. Real data was acquired from
military shows video by RPTLY Channel and toy data videos

used for training were from RC channel. Images in the dataset
are of different resolutions. We manually annotated collected
images in PASCAL VOC format. Experiments are performed
on our low-altitude aerial images dataset that includes 2
annotated main categories i.e. vehicle (11 classes) and non-
vehicle (2 classes). Vehicle category is further divided into
two categories i.e. Military vehicle and Non-military vehicle.
Our dataset contains 15086 images collected from Youtube
videos. For performing experiments, we divided dataset into
83% training set, 17% validation set. Performance of few
classes is not good due to their limited number of annotations
and images. Detail of categories used can be seen in Table III.

C. Benchmarking procedure

Training was performed using Intel Core i7-7700K proces-
sor with 2 NVIDIA Titan-X- GPU’s having 12 GB memory
each. The operating system was Linux Ubuntu 16.04. For
performance comparison of three architectures, initial fine-
tuning on their respective pre-trained models was performed
till 380K steps using our latest dataset with 15K Images.
We also demonstrated SSD performance using our proposed
military vehicle dataset. Initially pre-trained model was fined-
tuned on collected data (8476 Images) till 200K steps (1
epoch). Then it was further fine-tuned on same data till 500K
steps (2 epochs). Afterwards we fine-tined ckpt-500K on new
data (15086 Images) till 800K steps (3 epochs).

D. Implementation Details

As the training set was of limited size, we used a pre-trained
model that was trained on COCO (Common Object in Context)
dataset. Experiments were performed using three state of the
art meta-architectures. While TF Object Detection API [31]

TABLE III
NUMBER OF INSTANCES OF CLASSES BELONGING TO MILITARY, NON-MILITARY AND NON-VEHICLE CATEGORY. IT INCLUDES MILITARY ARMOURED
(M_ARMOURED), HEAVY EXPANDED MOBILITY TACTICAL TRUCK (HEMTT), MILITARY TRUCK (M_TRUCK), HIGH MOBILITY MULTI-PURPOSE
WHEELED VEHICLE (HMMWYV), MILITARY CAR (M_CAR), MILITARY AMBULANCE (M_MEDICS)

Category Military vehicle Non-military vehicle Non-vehicle
Class Tank | M_Armoured] HMMWYV| HEMTT| M_Truck| M_Car| M_Medics| Vehicle Car Truck | Bus | Non-vehicle | Person
# of instances | 5472 | 1724 651 1039 1796 231 14 4284 458 1541 8 4754 1125




(a) Military vehicle category

(b) Non-military vehicle category

(c) Non-vehicle category

Fig. 6. Our collected dataset comprises of 3 categories (Taken from RPTLY youtube videos [42] and our collected dataset).

TABLE IV
DETAIL OF COMMON CONFIGURATION PARAMETERS FOR TRAININGS TILL
250 K STEPS WITH ALL 3 ARCHITECTURES.

Parameters Values

Initial Learning Rate 0.003 (BUT 0.004 for SSD)
num_epochs 1

Batch Size 4 (BUT 2 For Faster-RCNN)
num_hard_examples 4000

shuffle True

num_steps 0K—150K—250K—380K

was used for training and evaluation. In order to achieve better
results, we configured values for hyper parameters as shown
in Table V. We evaluated MAP on different trainings steps.
As shown in table VI, the results on training ckpt-500K are
better than those achieved by using ckpt-200K. If IOU ratio
is bigger than 0.5 w.rt ground truth box, candidate region
is selected as a positive sample. Apart from this, we also
analyzed performance of three state of the architectures using
our dataset.

Table IV shows settings for training using three architectures
for comparison and table V shows specific configuration
settings for SSD specific analysis.

V. RESULTS AND EVALUATION

We evaluate the state of the art object detection methods
on our proposed dataset. We select Faster R-CNN [9], R-FCN
[41] and SSD [32] as our benchmark testing algorithms for
their good performance on general object detection.

Backbone networks are Inception Resnet (v2) [50] for Faster
R-CNN, ResNet-101 [48] for R-FCN and Inception V2 [49]
for SSD .

TABLE V
COMMON CONFIGURATION PARAMETERS FOR TRAININGS (200K, 500K
AND 800K STEPS) WITH SSD ONLY.

Parameters Values

Initial Learning Rate 0.004

num_epochs 1

Batch Size 16

num_hard_examples 3000 / 3000 / 3500 / 4000
shuffle True

num_steps 0K—200K—500K—800K

A. Quantitative Results

System implements combination of 3 state of the art
architectures and feature extractors. System performance is
evaluated on the basis of IoU, and the average precision (AP),
introduced in the Pascal VOC Challenge [3].

(1

IoU(A,B):‘AmB’

AUB

In Equation 1, A shows the ground-truth box collected in
the annotation while predicted result is represented by B. If
estimated IoU is greater than threshold value then predicted
result is a true positive else it is a false positive. Number
of false positives determines the accuracy of the network. IoU
method is used for evaluation of accuracy of an object detector.

Initially, we trained a model with small amount of data
and kept on increasing training data. Experiment is performed
using the same meta-architecture SSD with feature extrac-
tor inception v2. Initial Pre-trained Model (trained on coco
dataset) was fined-tuned on our collected data (8476 Images)
till 200K iterations. Afterwards it is further fine-tuned till
500K (300K times more) iterations on same data. Finally, we



increased the amount of data and further fine-tuned it on New
Data (15086 Images which included previous data too) till
800K iterations. Table VI shows that by increasing training
data and fine-tuning a pre-trained model, system is able to
improve the weighted average precision for each class. When
model was further fine-tuned from 500 K iteration till 800 K
iterations, the weighted average precision slightly decreased
due to diverse dataset.

TABLE VI

RESULTS OF TRAINING DONE TILL 800K ITERATIONS USING SSD
ARCHITECTURE.
Average precision
Total Iterations — | 200K 500K 800K
Class |
Tank 91.21% 9358% 94.07%
HEMTT 83.31% 9033% 94.36%
Vehicle 81.54% 86.18% 86.00%
M_Armoured 81.54% 90.53% 89.40%
MAP @ 0.5 IOU 69.63% 79.14% 77.67%
Weighted average precision

Total Iterations — | 200K 500K 800K
Category |
Military vehicle 83.64% 90.27% 89.67%
Non-military vehicle 76.08% 86.89% 85.56%
Non_Vehicle 55.95% 79.84% 81.16%

TABLE VII

RESULTS OF TRAINING DONE TILL 380K ITERATIONS USING THREE STATE
OF THE ART ARCHITECTURES.

Average precision

Faster R- | R-FCN SSD

CNN
Feature Extractors — | Inception ResNet- Inception
Class | resnet v2 101 v2
Tank 70.55% 68.59% 81.31%
HEMTT 88.46% 79.07% 13.72%
Vehicle 71.53% 05.94% 26.00%
M_Armoured 61.13% 51.73% 57.89%
MAP @ 0.5 IOU 50.69% 35.10% 32.36%

Weighted average precision

Architecture — | Faster R-CNN R-FCN SSD
Category |
Military vehicle 62.79% 57.65% 61.56%
Non-military vehicle 58.88% 09.26% 31.35%
Non_Vehicle 60.72% 37.43% 30.51%

We also performed experiment to compare results of three
architectures using our latest dataset having 15086 Images.
Detection Results achieved after performing training till 380K
iterations show that Faster R-CNN performed better as com-
pared to RFCN and SSD. Results are given in Table VII.

B. Qualitative Results

As shown in Figure 4 and Figure 7, system is able to
classify and localize vehicles in a low-altitude aerial images.
Estimated results were compared with the ground truth using
an IoU >0.5. While increasing training data and evaluating
performance of SSD architecture, we observed that training
till 200 K iterations performed well on classes like person,

vehicle, Bus, Car. While training till 500 K iteration of able
to perform well on un-seen data, especially involving tanks
and few military vehicles.

Fig. 7. Detection Results on military vehicles (taken from toy videos of RC
youtube channel [44-45]).

Fig. 8. Miss-classification in real military vehicles taken from RPTLY youtube
videos [42].

VI. ANALYSIS OF SUCCESS AND FAILURE CASES

Overall it was observed that two classes i.e. Tank and
HEMTT, perfomed well in both of our experiments. The
reason behind that is both classes were having more training
data as compared to other classes. Details of our proposed
dataset are given in Table III. During analysis, we observed
that system had good performance on test cases and on un-seen
data, but there were difficulties in some cases for which we
had a small training set. It performs well on tanks in un-seen
data as compared to other military vehicles because the ratio of
its training data is more. Figure 8 shows the result of extensive
fine-tuning (detail in Table VI). The model starts performing
bad on data, on which it was previously performing better. This
also because of less training data w.r.t that class. Figure 8 and
figure 9 show cases of miss-detections and wrongly classified.

VII. CONCLUSION

We proposed a detector based on deep learning approach
for military vehicle detection and classification from aerial im-
ages, which are taken from prepared dataset that we generated.
This system detects the class and location of military and non-
military vehicle in captured aerial images. The main reason



Fig. 9. Wrong classification of vehicles (taken from EPFL dataset [43] ).

due to which it differs from existing methods for vehicle detec-
tion and classification is that the detector is applied on images
captured from Real Vehicle Videos (Military shows) and Toy
Vehicle videos (RC YouTube videos) and software system
using GPUs process them. Furthermore, our collected dataset
contains different scenarios, like size of vehicles, background
variations etc. For selecting the best suitable architecture for
this task, we performed comparative analysis between different
deep-learning architectures (with feature extractors combina-
tion). Experimental results demonstrate that by applying deep-
learning-based detector using our proposed dataset, it is able
to detect 2 different categories of vehicles (with 11 classes).
In addition, 2 more classes were added to accommodate Non-
Vehicle category. We expect that our proposed dataset will
make a significant contribution to the Military-Defence sector.
Our target for future work is to focus on improving current
detection results and extend the idea of Military-Vehicles
recognition to work on other surveillance and security related
projects. We demonstrated the performance of 3 state-of-the-
art architecture for military-vehicle detection purposes. For
SSD architecture, we systematically evaluated per category
detection improvement based on change in hyper parameters
and increase in images per category. We proposed a dataset
and hyper parameters settings for handling small objects in
aerial images for best detection results. As per our knowledge,
no work is currently done on military vehicle detection from
aerial images.
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