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Abstract

Underwater stereo-video systems are widely used for the measurement of fish.
However, the effectiveness of stereo-video measurement has been limited because
most operational systems still rely on a human operator. In this paper an
automated approach for fish detection, using a shape-based level-sets framework,
is presented. Knowledge of the shape of fish is modelled by principal component
analysis (PCA). The Haar classifier is used for precise localisation of the fish head
and snout in the image, which is vital information for close-proximity initialisation
of the shape model. The approach has been tested on underwater images
representing a variety of challenging situations typical of the underwater
environment, such as background interference and poor contrast boundaries. The
results obtained demonstrate that the approach is capable of overcoming these
difficulties and capturing the fish outline to sub-pixel accuracy.

Keywords: fish detection, image segmentation, level sets, prior shape knowledge,
registration, underwater image

Background and Introduction

SOUTHERN BLUEFIN TUNA (SBT – Thunnus maccoyii) is a highly migratory species of fish
inhabiting open oceans at mid-latitudes in the southern hemisphere. SBT can live for up to
about 40 years, reaching a weight of 200 kg and a length of 2 m, but are slow growing,
maturing at around 8 to 12 years of age. In the past, the species has supported pole and
longline commercial fisheries in Japan and Australia and, to a lesser extent, Taiwan, New
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Zealand, Indonesia and Korea. However, SBT catches fell steadily from the 1960s due to
over-exploitation, and in response to the formation of the Commission for the Conservation
of Southern Bluefin Tuna (CCSBT) and the formalisation of voluntary quotas in 1994, the
focus has shifted from fishing to aquaculture. Farming operations based at Port Lincoln in
South Australia now account for more than 98% of the 2014 Australian total catch quota of
5147 tonnes. The remainder are caught using longlines or by recreational fishing. SBT are
exported almost exclusively to the Japanese “sashimi” markets where it is one of the most
valuable fish supplied to the restaurant industry. The Australian SBT industry is valued at
over A$1 billion and the export income is approximately A$300 million per annum.

The Australian industry operates by catching juvenile and sub-adult SBT in the Great
Australian Bight, transporting the fish to floating grow-out cages at Port Lincoln and then
fattening the SBT for several months on a diet predominantly comprised of pilchards
(Sardinops spp.). The SBT are harvested for the Japanese markets when both the product
and prices are optimal. The fish are approximately 1�0 to 1�4 m in length and weigh about
20 to 50 kg when caught. The aquaculture approach doubles the value of the exported
fish.

Stereo-video Measurement

The quota has to be monitored to ensure that the catch of SBT transferred to the
aquaculture cages does not exceed the tonnage limit imposed by the CCSBT. Traditionally,
the SBT are counted during the transfers from the purse-seine nets into the grow-out cages
to exclude mortality during the towing period (Fig. 1). Until recently, a sample of 40 fish
has been universally used by the industry to estimate the total weight of up to 10 000 SBT
in the largest cages. Concerns around stratification of fish in the water column and the
statistical validity of the simple estimates have resulted in the introduction of underwater
stereo-video systems by the Australian Fisheries Management Authority (AFMA) to provide
an accurate measurement of the total weight of each transfer (Harvey et al., 2003).
Underwater stereo-video is well established as an effective tool that is capable of making
accurate, precise and non-invasive measurements of fish length (Naiberg et al., 1993;
Harvey and Shortis, 1996; Steeves et al., 1998) and has the potential to measure 95% of the
population in a cage. Based on the snout-to-tail lengths of the fish measured by stereo
intersection, weight can be accurately deduced using a length–weight regression (Pienaar
and Thomson, 1969; Harvey et al., 2003).

However, the effectiveness of the stereo-video measurement has been limited because
most operational systems still rely on a human operator to identify and measure the snout
and tail of the fish in order to determine the length by intersection. Whilst automation of the
identification of objects and image measurement processes have been demonstrated in many
other contexts, due to the uncontrolled underwater environment combined with the loss of
contrast because of attenuation through the water, an automated solution for fish sizing has
been elusive. Whilst automation of some aspects of the process has been established for at
least 15 years (Lines et al., 2001), only recently have fully operational systems that identify,
delineate, track and measure fish in an uncontrolled environment been reported (Shortis
et al., 2013).

The aim of the current research is to develop a general approach to the automatic
measurement of fish in uncontrolled underwater environments. The techniques and
algorithms in the measurement approach should be capable of automated measurement of
SBT during a transfer to ensure quota compliance, or any species in an aquaculture cage to
manage quotas, monitor growth rates or optimise feeding regimes. Automated measurement
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is also essential for marine science applications such as habitat monitoring to determine the
sustainability and biodiversity of vibrant reef communities (Watson et al., 2009) or more
dispersed deep water environments (Shortis et al., 2008). Whilst rapid, automated
processing is needed for SBT quota management, long-term studies of management
strategies for Marine Protected Areas or threatened species also require automated analysis
to process the massive catalogues of video sequences that are captured for longitudinal or
spatial studies. However, the initial priority for development of the automated processing is
the SBT transfers, in order to rapidly develop an accurate and effective measurement
process in response to increased use of underwater stereo-video systems mandated by
AFMA.

Fish Identification and Outline Delineation

In the context of this research, automated detection methodologies comprise two steps:
identification and subsequent delineation of the fish outline. The existing literature on fish
detection has been mainly focused on the identification step only, where the presence of fish
is recognised in the scene and followed by the estimation of the fish location (Evans, 2003;
Walther et al., 2004; Morais et al., 2005; Zhou and Clark, 2006; Spampinato et al., 2008;
Palazzo et al., 2013). In contrast, relatively few approaches have been reported that deal
with both identification and the following delineation of the fish silhouette (Lines et al.,
2001; Hariharakrishnan and Schonfeld, 2005; Khanfar et al., 2010).

In Palazzo et al. (2013), colour and texture features integrated into a covariance-based
model are used to identify fish with an average success rate of 80%. Similarly, Spampinato
et al. (2008) used colour and texture within an adaptive Gaussian mixture model with a
performance of about 85%. The Gaussian mixture model has also been employed by Evans
(2003) to integrate fish shapes in the image domain. In Zhou and Clark (2006), head and
tail features of a particular fish species are extracted through Gabor filtering (designed for
texture detection) and modelled by geometrical characteristics. This approach has assumed a
certain orientation of the fish and the image being clear of occlusions. Morais et al. (2005)
modelled a fish as an ellipse and proposed a methodology to identify and count fishes based
on the application of a Bayesian filtering technique with a success rate of 81%. While this
approach offers a number of flexibilities and is not constrained by the quantity, behaviour,
size and pose of fish, it requires a large number of training samples for the filtering
algorithm to perform successfully, which is time consuming to generate. The method
proposed by Walther et al. (2004) to extract fish outperforms other methods with a success
rate of 90% being reported. This technique employed an attentional selection algorithm to
detect and track salient features across video frames. These features are then classified to
identify the object of interest.

In contrast to those approaches aforementioned, the following three approaches
produce the outline of fish in two separate steps. Hariharakrishnan and Schonfeld (2005)
proposed an approach that identifies fish through a watershed-based segmentation and
subsequently captures the fish boundary using motion vector information between frames.
This approach requires a prior knowledge about the class of fish to process images
automatically. Otherwise, the fish outline is extracted manually to be entered into the
tracking module.

Khanfar et al. (2010) used combined frame differences and histogram thresholding to
identify fishes in the images. Then, an edge-detection operator is applied to the image,
segmented by thresholding to detect the initial fish. The fish outline is obtained by a
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shrinking circle to locate its outer boundary more precisely. This method, however, can fail
due to scene complexity of an uncontrolled marine environment and poor contrast of fish
boundaries. Furthermore, the elastic curve employed can ultimately converge to the outer
edge in which case the fish shape cannot be captured accurately.

Lines et al. (2001) proposed a pattern recognition method called the binary pattern
classifier to identify objects in the image that are likely to be fish and, subsequently, a
model-based point distribution model (PDM) method is used to fit a shape template,
generated from a set of training images, to the target fish by minimising an energy-like
function. This approach showed a relatively low success rate of 63% in precise delineation
of fish outlines and is sensitive to the initial placement of the model. Furthermore, PDM
cannot recover the fish shape when occluded by shadows. Although Lines et al. (2001) used
shape information to move the curve to the expected positions, the underlying energy
function is based on image gradient only, and thus is highly sensitive to the presence of
noise and poor image contrast. A region-based energy term is necessary to overcome these
limitations.

Most of these approaches use low-level image features such as colour, texture,
intensity and motion to detect fish. However, in a real-life situation, the uncontrolled
underwater environment produces images that are characterised by low contrast,
background clutter and interference, partial occlusion caused by adjacent or foreground
objects, varied illumination conditions and shadows. The aforementioned techniques fail to
produce high-quality results mainly due to misleading low-level features resulting from
image noise and occlusion, or lack of sufficient low-level features necessary for object
modelling. High-level knowledge of fish can significantly aid in providing an efficient
solution to these problems.

New Research Approach

In this paper, an automated approach for fish detection using a shape-based level-sets
framework is presented. An example of underwater stereo-images used is shown in Fig. 1.
The shape knowledge of fish is modelled by principal component analysis (PCA) (Leventon
et al., 2000) that will be used to guide the level-set curves. PCA enables the representation
of global shape variation of the object of interest through a training set of shape templates.
The global shape information is incorporated into the Mumford–Shah functional, as
reported by Chan and Vese (2001), which can detect objects in strongly cluttered scenes. A
Haar-like detector method (designed for object recognition) is used to identify the existence
of fish and determine their locations in the image. This information is vital to place the
shape in close proximity to the object to be segmented, which increases the success rate
and requires fewer iterations for convergence. The level-set algorithm is applied to one
image at a time. Once the fish are independently identified on the left and right images,
stereo intersections for the snout and tail are computed based on the well-established
approach of a geometrically constrained epipolar search and template match between the
two images.

The outline of this paper is as follows. In the next section a short review of level sets
is given. The individual steps of the proposed detection strategy along with mathematical
equations are described in the following section. Next, experimental results using
underwater sample image sequences recorded in cages are presented and evaluated. The
paper concludes with a discussion of the progress and results achieved, and an outlook for
future work.
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Level-sets Representation

Level sets share many properties with snakes. Snakes (Kass et al., 1988) have emerged
as a powerful tool for semi-automated object modelling. They have been used in a
photogrammetric context by authors such as Ravanbakhsh et al. (2008) and Yari et al.
(2014) and are especially useful for delineating features like fish bodies that are difficult to
model with rigid geometric primitives. Snakes are represented as explicit, parametric
contours. As a result, they do not allow for automatic changes of topology. Several
approaches were proposed to address this problem (Szeliski et al., 1993; McInerney and
Terzopoulos, 1995) that propose heuristic procedures for detecting possible splitting and
merging of the initial contour. In contrast, level sets (Osher and Sethian, 1988) are
parameter-free, which allows for splitting and merging in a natural way. Snakes are known
as an edge-based segmentation technique, which means the incorporation of region and
shape information into their energy functional is not straightforward. In this work, a level-
sets framework is adopted to introduce region and shape information into the segmentation
process. Whilst the change in topology functionality is not used explicitly in this research,
this capability will be incorporated in future work to improve the flexibility of the shape
representation.

The core idea of level sets is to implicitly represent a contour C as the zero-level curve
of a function φ of higher dimension (Fig. 2). An initialisation of φ can be constructed in the
following way. Let C be a closed curve representing the boundary between two regions, one
region inside the curve and another region outside the curve. Here φ is then defined as the
signed distance �d(x) to the curve, negative inside and positive outside. The definition is
illustrated as:

uðxÞ ¼ �dðxÞ if x is inside C
þdðxÞ if x is outside C.

�
ð1Þ

While the use of the distance d(x) is not mandatory when using level sets, it ensures
that φ does not become too flat or too steep near C, and subsequently can be differentiated
across the zero-level curve without running into numerical problems.

In order to combine the characteristics of the level-set function, image information
and shape knowledge of the known object, an energy functional can be set up and

Fig. 1. Typical stereo-image pair captured during a transfer from the purse-seine net to the grow-out cage. The
water surface is to the right of the images and the apparent vertical orientation of the fish is caused by the

mounting of the stereo-video system on the side of the transfer gate.
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consequently minimised using the calculus of variations. Minimising the energy functional
is performed in an iterative process moving the initial curve towards the object
boundaries.

Detection Strategy

The fish detection strategy comprises three primary steps (Fig. 3). First, the presence of
fish is recognised and the initial locations are determined using segmentation of a frame
difference from an averaged background image. A Haar-like detector is then employed to

(a) (b)

Fig. 2. Illustration of level sets. (a) The circular curve C is used to construct the level-set function φ such that
φ is negative inside and positive outside the curve. Distance values d are grey-value coded. (b) A plane at zero

level (Z = 0) intersects the level-set function φ and thus the zero-level curve C is obtained.

Identification by 
Haar-like detector

Shape prior generation 
and initialisation

Shape-based level sets 
curve evolution

Location, orientation and 
the number of fishes

Shape model & 
initial curve

INPUT DATA RESULT

Image sequences Detected fish

PROPOSED APPROACH

Fig. 3. Workflow of fish detection.
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estimate the snout and tail locations, from which the initial position and orientation of each
fish in the image can be derived. Subsequently, prior knowledge of the fish shape, the so-
called shape-prior model, is constructed by PCA using a set of training samples. The level-
sets curve is then initialised and evolved to locate the fish boundary. The result obtained
consists of the detected fish.

Identification

In this stage, the location of the fish snout and tail in the image are determined. Precise
localisation of the snout and tail leads to the estimation of pose parameters in 2D space,
these being two rotations, two translations and one scale parameter.

Of the many approaches that can be employed to locate the fish snout and tail,
template matching has shown a certain degree of success as reported in Mahmood and
Khan (2010, 2012). In this approach, single representative templates, centred on the snout
and tail mid-points, are extracted from sample videos. Template matching, using correlation
rather than absolute differences to provide robustness in the presence of illumination
changes, is used to locate the regions of interest in the video images. However, this
approach does not account for perspective distortion, requiring either the use of multiple
templates that capture appearance variations from different viewing angles, or using the
more common solution of image matching based on affine or perspective transformation.

A more effective method of locating snout and tail is to use Haar-like features in a
boosted classifier set-up (Viola and Jones, 2004) that has shown high object-detection
accuracy, besides being able to operate in real time. The method is in widespread use for
face detection, even being employed by low-cost consumer-grade cameras for real-time
face-priority focus. Additionally, Haar-like classifiers are employed in this research for
locating the snout and tail of fish in underwater image sequences because of their high
detection speed and ability to perform a scale-space search.

To train the classifier, 200 manually cropped images of the target object (snout or tail)
are used so that the classifier can learn which features (among a set of possibly thousands
of features) can locate the target with high accuracy. These features, once learned, are then
used to construct the object classifier that can locate the presence of the object in cluttered
scenes. The training time depends on the amount of training data, but in general requires a
few hours of processing time. Retraining is required only if the imaging conditions change
substantially.

The results of independent detection of the snout and tail using Haar detectors are
further improved using relationships between the detected snouts and tails. The search for
the tail is based on the results of snout detection and vice versa, within the limits of
separation and angle expected for the imagery. Fig. 4 shows an example of a Haar
classifier used to identify the snouts and tails and of southern bluefin tuna (SBT) during a
transfer.

Precise localisation of the tip of the snout and the valley point of the tail, used as
reference points, are used to estimate rigid transformation parameters. These transformation
parameters are then used to first generate the reference shape and subsequently initialise the
shape model, two crucial steps in accurate and correct delineation of fish.

Shape-prior Generation

The generation of shape prior comprises two steps: first, the training samples need to
be geometrically aligned; subsequently, the shape model is constructed from the aligned
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shapes. The alignment involves matching shapes of training samples that differ in size,
orientation and translation. In the literature, a large number of shape matching methods have
been reported. A complete review of those methods is given in Veltkamp and Hagedoorn
(1999).

In this paper, the alignment of training samples is realised using the method introduced
in Chen et al. (2002). Suppose that the training set contains n given curves C1, . . . , Cn

with their corresponding interior regions A1, . . . , An as subsets of R2. The shape similarity
measure of the shapes C1 and C2 are defined as:

aðC1;C2Þ ¼ area of ðA1 [ A2 � A1 \ A2Þ: ð2Þ

In the alignment process, the so-called pose parameter of C1 is considered to be fixed,
and the remainder of the samples (C2, . . . , Cn) are jointly aligned to C1 through the
solution of the rigid transformation:

Cnew
j ¼ sjRjCj þ Tj ðj ¼ 2; . . . ; nÞ

such that the area a(C1, Cj
new) is minimised and where sj is a scale factor, Rj is a rotation

matrix and Tj is a translation. These values are obtained by a global optimisation algorithm
called the genetic algorithm (Davis, 1991), which makes it less likely for the underlying
function to be trapped in a suboptimal local minimum compared with purely local methods
such as gradient descent.

The shapes are encoded in binary images to simplify the alignment task. Fig. 5 shows
a set of 20 training samples manually digitised and the result of their alignment. The first
sample (bottom row, leftmost), which is the scaled, shifted and rotated version of the
corresponding manually digitised sample (top row, leftmost), is adopted as the reference. It
has fixed pose parameters estimated in the identification process and to which the rest of the
samples are registered. Figs. 6(a) and (b) illustrate the amount of shape variability depicted

Fig. 4. The identification of SBT snouts and tails, marked by ellipses, using the Haar classifier.
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in the overlap images before and after the alignment. It can be seen that large shape
discrepancies can often exist in real fish images. These shape differences can be removed
successfully, which demonstrates the effectiveness of the alignment method (Fig. 6(c)).
Furthermore, model variability is represented in Fig. 6(d), showing that the areas around the
boundaries of the fish fin and tail experience the largest deformations in the fish body
outline. It is interesting to note that key regions that could be used for species identification,
such as the dorsal and anal fins together with the tail, are the profile sections which show
the greatest variability.

In the next step, a shape model is constructed using the aligned shapes. The PCA
method is selected to construct the shape model due to its efficiency at capturing the main
variations of a training set while removing redundant information. In a similar manner to
Leventon et al. (2000), the boundaries of each of the training shapes are represented in the
training dataset as the zero-level set of n signed distance functions (SDFs) {φ1, . . . , φn}
with negative distances assigned to the inside, and positive distances assigned to the
outside, of the shape boundary.

Suppose M is a matrix whose column vectors are the n aligned training SDFs {φi}.
PCA is then applied to these SDFs to compute eigenvalues and eigenvectors of the
covariance matrix:

Fig. 5. Twenty manually digitised training samples. The top row shows the binary representation of the shape
model of fish before alignment. The bottom row presents the training samples that were geometrically aligned.

(a) (b) (c) (d)

Fig. 6. (a) Overlaid training samples depicting varying degrees of overlap before alignment. (b) Aligned
samples. (c) Average of aligned shapes. (d) Model variability (grey-value coded) with white representing the

highest variability and black the lowest variability.
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R ¼ 1
n
MMT ð3Þ

and the mean level-set function of the training set:

�u ¼ ð1=nÞ
Xn
i¼1

ui: ð4Þ

The eigenvectors are called principal components or eigenshapes. In practice, the first k
principal components (k ≤ i) are sufficient to model the major shape variations in the
training samples. In Mika et al. (1999), a method is proposed for determining the value of k
by examining the eigenvalues of the corresponding eigenvectors. This approach, however,
cannot be adopted here as the value of k varies in different applications (Tsai et al., 2003).
In this work, the value of k was set empirically based on extensive testing and visual
evaluation. Then, shape can be represented as the zero-level set of the following function:

uðwÞ ¼ �uþ
Xk
i¼1

wiui ð5Þ

where w = {w1, . . . , wk} denote the weights for the k eigenshapes, with the variances of
these weights {r21; . . . ;r

2
k} given by the eigenvalues. In equation (5), the shape variability is

restricted to the variability given by the eigenshapes. To accommodate a wider range of
shape variability, a pose parameter p (this being the translation, scale and orientation) is
incorporated into the level-set function of (5). With the addition of p, the implicit
description of shape is given by the zero-level set of the following function:

uðw; pÞ ¼ �uþ
Xk
i¼1

wiui ð6Þ

where �u and each φi are now a function of p.
Once the shape model is generated, an initial level-set function is constructed using a

rectangle as the initial “curve” around the detected fish. Then, the zero-level set of the level-
set function is evolved towards the fish boundary according to the energy functional. The
energy functional is described in the following section.

Shape-based Level-sets Energy Functional

The energy functional is based on the segmentation model proposed by Chan and Vese
(2001) in an effort to overcome the limitations found with the previous edge-based
strategies. Unlike edge-based methods, where the provision of close initialisation to the
object of interest and good contrast boundaries are necessary to locate those boundaries, the
region-based methods used in this work are independent of image gradients and are less
likely to converge to local minima if an undesirable feature or image noise is present.

Let I be a given image and C the evolving curve defined as C ¼ fðx; yÞ 2
R2 : uðx; yÞ ¼ 0g, with u and v denoting two constants representing the averages of I inside
and outside the curve C. Assume that the image I is formed by two regions of
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approximately piecewise-constant intensities with distinct values of Ii0 and Io0 , and that the
object to be detected is represented by the region with value Ii0 and boundary C. Then,
I0 � Ii0 inside the object (inside C) and I0 � Io0 outside the object (outside C). By
minimising the following energy equation, the boundary of the object of interest C is
obtained (Chan and Vese, 2001):

Ecv ¼
Z

inside C

jI � uj2 d x d yþ
Z

outside C

jI � vj2 d x d y ð7Þ

which is equivalent to the energy functional below (Tsai et al., 2001):

Ecv ¼ �ðu2Au þ v2AvÞ ¼ � S2u
Au

þ S2v
Av

� �
ð8Þ

where Au and Av denote areas, and Su and Sv represent the sum intensity of areas, inside and
outside C, respectively. Then, the gradient descent is employed to search for the parameters
w and p that minimise Ecv to implicitly determine the segmenting curve C. The parameters
Au, Av, Su and Sv can be expressed in terms of u(w, p):

Su ¼
Z
X

IHðuðw; pÞÞ dA; Au ¼
Z
X

Hðuðw; pÞÞ dA ð9Þ

and

Sv ¼
Z
X

IHð�uðw; pÞÞ dA; Av ¼
Z
X

Hð�uðw; pÞÞ dA ð10Þ

where Ω defines a bounded and open subset of R2 and H denotes the Heaviside function:

Hðuðw;pÞÞ ¼ 1 if uðw; pÞ\0
0 if uðw; pÞ� 0:

�
ð11Þ

The energy function (8) is minimised with respect to w and p using gradient descent
optimisation:

rwEcv ¼ �2ðurwSu þ vrwSvÞ þ ðu2rwAu þ v2rwAvÞ ð12Þ

rpEcv ¼ �2ðurpSu þ vrpSvÞ þ ðu2rpAu þ v2rpAvÞ ð13Þ

where the gradient parameters are given as:

rwiAu ¼ �rwiAv ¼ �
Z
C

uiðpÞ d s ð14Þ

rwiSu ¼ �rwiSv ¼ �
Z
C

IuiðpÞ d s ð15Þ
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rpiAu ¼ �rpiAv ¼ �
Z
C

rpiuðw; pÞ d s ð16Þ

rpiSu ¼ �rpiSv ¼ �
Z
C

Irpiuðw; pÞ d s: ð17Þ

In these equations the segmenting curve C is given by the zero-level set of φ(w, p), and
rpiuðw; pÞ is the gradient of φ(w, p) taken with respect to the ith component of the
transformation matrix p that includes translation, rotation and scale. The gradient descent
optimisation of equations (12) and (13) leads to the parameters w and p. The updated w and
p parameters, which are iteratively computed during the optimisation, are then used to
implicitly determine the location of the segmenting curve C.

The curve evolution is terminated when the overall change in the evolving curve
positions per iteration is less than 0�1 pixel. A smaller threshold considerably increases the
computation cost, although the quality of the final result is similar.

Experimental Results and Evaluation

Underwater image sequences, recorded at the transfer gate between two cages, have
been used to test the fish detection algorithm. From the large number of video samples
recorded for eight transfers, 35 sample images have been chosen to represent the variable
and uncontrolled nature of the marine environment. These images include a varying number
of SBT fish with a range of illumination changes, background interference and occlusions
caused by adjacent fishes. Moreover, SBT appear in the image sequences with missing or
poor contrast boundaries which further exacerbates the challenging conditions.

In Fig. 7, an example of results is shown where the initial “curve” is placed as a
rectangle around the fish of interest; this curve subsequently converges to the fish boundary
by minimising the energy functional presented in the previous section. Further example
results are shown in Fig. 8 where, in the four rightmost samples, SBT are partially occluded
by other neighbouring fishes in the foreground and background. In almost all samples, fish
boundaries are of low contrast, especially in the areas around the tail and fin. The detection
results shown in Fig. 8 demonstrate that the approach is capable of overcoming those
limitations typical of the underwater environment and capturing the fish outline accurately.

(a) (b) n = 3 (c) n = 10 (d) n = 13 (e) n = 54  

Fig. 7. Fish detection result. (a) Initial curve; (b), (c) and (d) intermediate curves and (e) the final detection
result. n denotes the number of iterations in the intermediate and the final result.
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In order to quantitatively evaluate the performance of the approach, the detection
results were compared to manually plotted fish used as reference data. The comparison was
carried out by matching the detection results to the reference data using the so-called buffer
method (Heipke et al., 1998). A detected object is assumed to be correct if the maximum
distance between the detected object and its corresponding reference does not exceed the
buffer width. Furthermore, a reference object is assumed to be matched if the maximum
deviation from the detected object is within the buffer width. Based on these assumptions
the following quality measures were used in the present work:

(1) Completeness: the ratio of the number of matched reference objects to the total
number of objects.

(2) Correctness: the ratio of the number of correctly detected objects to the number of
detected objects.

(3) Geometric accuracy: the average distance between the correctly detected objects
and its corresponding reference expressed as root mean square (RMS) value.

Table I shows the fish detection evaluation results. The buffer width can be defined
according to the required detection accuracy for a specific application. In the tests in this
research, the buffer was set to 3, 5 and 8 pixels according to the range of accuracy
achievable at the identification step. Furthermore, this selection allows assessment of the
relevance of the approach for applications that demand varying degrees of accuracy. Both
the completeness and correctness have increased as the buffer width was increased from 3
to 8 pixels, implying that the results are more complete and correct for higher buffer-width
values. However, the geometrical accuracy increases in inverse proportion to the buffer-
width value, so that results obtained with a value of 3 pixels are more accurate than those
obtained with a larger buffer-width value. There is thus a certain trade-off between
correctness and completeness on the one hand, and geometric accuracy on the other.

As expected, the results are encouraging and sub-pixel geometric accuracy has been
achieved in all experiments with high rates of completeness and correctness. Table I shows
that the developed approach is, in principle, capable of extracting fish accurately under

n = 45 n = 56n = 96 n = 59 n = 32 n = 126 n = 154 n = 71 n = 91 

Fig. 8. Detection results of different fish in the presence of a range of background interference and foreground
occlusions by other fish (two rightmost samples). n denotes the final number of iterations as shown for different

fish samples.

Table I. Evaluation results for fish detection applied to 35 samples.

Buffer width (pixel) Correctness (%) Completeness (%) Geometric accuracy (pixel)

3 89�6 91�4 0�7
5 94�3 94�3 0�8
8 100 100 0�9
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occlusion and within variable underwater environments. Whilst no formal time comparison
between manual measurement and the automatic approach has been carried out, due to the
high curvature of the fish shape and the requirement for many points to be digitised, the
automatic approach will certainly achieve much higher efficiency levels.

However, a few problems still remain. Fig. 9 displays two examples where large
deviations from the prior-shape model can be observed, particularly in the upper half of the
fish body and around the tail. As shown in Fig. 6(d), it is expected that most of the
deformation takes place around the fins and the tail. Thus, such severe deformation cannot
be absorbed with the current shape model.

Conclusion and Outlook

In this paper, an automated approach for the detection of fish from underwater images
has been proposed, developed and tested. It comprises a region-based level-set method that
enables the delineation of the fish outline. The shape information of fish is incorporated into
the level-sets formulation through the PCA method to overcome such limitations as poor
contrast boundaries, background clutter and occlusions caused by neighbouring fish. To
provide a close initialisation for the shape model, the pose of fish in the image is
determined using the Haar classifier. The results of the developed approach have been
applied to 35 samples of varying quality and levels of occlusion, and include a quantitative
evaluation of the results using three buffer-width values.

The presented results show that level sets can be used to delineate fish outlines from
underwater images if the shape information of the fish species is incorporated into the level-
sets energy functional. Furthermore, it was found that an energy function that is independent
of image gradients and includes the shape model is able to overcome various kinds of
disturbances and the problems related to low-quality images recorded in the underwater
environment, such as poor contrast and uneven illumination.

The current approach is developed to detect SBT in a farming aquaculture
environment. The techniques developed here have clear potential to be extended to wild
habitats provided that the deformation of the fish body and movement information derived
from image sequences is taken into account. In wild habitats, fish can move in any direction
with large deformations occurring in the body, as shown in Fig. 9, causing the fish
detection approach to break down.

Fig. 9. Two samples where the approach fails to delineate the entire fish boundary.
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For the technique to be successful in wild habitats, varying rates of deformation and
fish orientation need to be modelled. The detection of different fish species in addition to
SBT is another goal that will be pursued in future research, as in reef and other underwater
habitats many fish species are present. Furthermore, investigation into the possibility of
using colour information in the level-sets formulation will be carried out.
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R�esum�e

Les syst�emes vid�eo st�er�eoscopiques sous-marins sont largement utilis�es pour la mesure des poissons.
Cependant, la possibilit�e d’une telle mesure est limit�ee car la plupart des syst�emes op�erationnels s’appuient
toujours sur un op�erateur humain. Dans cet article, une approche automatis�ee pour la d�etection de poissons,
utilisant une m�ethode par ensembles de niveau bas�ee sur la forme, est pr�esent�ee. La connaissance de la forme
du poisson est mod�elis�ee par une analyse en composantes principales (ACP). Le classificateur de Haar est
utilis�e pour la localisation pr�ecise de la tête et du museau du poisson dans l’image, une information vitale pour
l’initialisation du mod�ele de forme. L’approche a �et�e test�ee sur des images sous-marines repr�esentant une
vari�et�e de situations difficiles typiques des environnements sous-marins, comme les interf�erences avec le fond et
les limites peu contrast�ees. Les r�esultats obtenus montrent que la m�ethode permet de surmonter ces difficult�es et
de d�eterminer le contour du poisson avec une pr�ecision inf�erieure au pixel.

Zusammenfassung

Zur Vermessung von Fischen sind Unterwasser Stereo-Video Systeme weit verbreitet. Allerdings ben€otigen
die im Markt erh€altlichen Systeme in der Regel den menschlichen Operateur und sind somit hinsichtlich
Automation in der Effektivit€at begrenzt. Dieser Beitrag stellt einen automatisierten Ansatz zur Erkennung von
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Fischen vor, der auf Basis von Formkriterien arbeitet. Das Wissen €uber Fischformen wird durch eine
Hauptkomponentenanalyse (PCA) modelliert. Mit Hilfe des Haar Klassifizierers wird eine genaue Lokalisierung
von Kopf und Maul des Fisches im Bild erzielt, die entscheidend f€ur die passende Initalisierung des
Formmodells ist. Der vorgestellte Ansatz ist mit Unterwasseraufnahmen gepr€uft worden, die durchaus
schwierige Situationen, wie Interferenz mit dem Hintergrund, oder schwache Kontrastgrenzen beinhalten. Es hat
sich gezeigt, dass der Ansatz auch derartige Probleme bearbeiten kann und den Fischumriss mit Sub-Pixel
Genauigkeit erfassen kann.

Resumen

Los sistemas de video estereosc�opico subacu�atico se usan profusamente en la medida de peces. Sin
embargo, en la mayor�ıa de los sistemas operacionales de video estereosc�opico la eficiencia de las medidas est�a
limitada a su dependencia en un operador humano. En este art�ıculo se presenta un procedimiento de detecci�on
autom�atico de peces. La forma de los peces se modela mediante el an�alisis de componentes principales. El
clasificador de Haar se usa para la precisa localizaci�on de la cabeza y el hocico del pez en la imagen,
informaci�on vital para una inicializaci�on del modelo de la forma del pez. Este procedimiento ha sido
comprobado en una variedad de im�agenes acu�aticas representando diversas situaciones dif�ıciles del entorno
acu�atico, tales c�omo interferencias del fondo de la imagen y fronteras con un pobre contraste. Los resultados
demuestran que este procedimiento es capaz de superar dichas dificultades y capturar el contorno del pez con
precisi�on subp�ıxel.

摘要

水下立体视频系统广泛用于鱼类的测量。然而,由于多数立体视频量测仍然依赖于人工操作,因此限制

了立体视频测量的应用。本文提出了一种自动化鱼检测的方法,使用基于形状的水平集框架。其中鱼的形

状的知识通过主成分分析模型采集,Haar分类器用于在图像中鱼的头、鼻子的精确定位,这是形状模型初始

化前的重要信息。该方法已在各类具有挑战性的典型的水下环境中获取的水下图像上进行了测试,如背景

干扰和低对比度边界。结果表明该方法能够克服以上难题,且捕获的鱼的轮廓可以达到亚像素级精度。
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