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ABSTRACT

In this paper, we present a generic Optical Character Recognition system for Arabic script languages called
Nabocr. Nabocr uses OCR approaches specific for Arabic script recognition. Performing recognition on Arabic
script text is relatively more difficult than Latin text due to the nature of Arabic script, which is cursive and
context sensitive. Moreover, Arabic script has different writing styles that vary in complexity. Nabocr is initially
trained to recognize both Urdu Nastaleeq and Arabic Naskh fonts. However, it can be trained by users to be
used for other Arabic script languages. We have evaluated our system’s performance for both Urdu and Arabic.
In order to evaluate Urdu recognition, we have generated a dataset of Urdu text called UPTI (Urdu Printed
Text Image Database), which measures different aspects of a recognition system. The performance of our system
for Urdu clean text is 91%. For Arabic clean text, the performance is 86%. Moreover, we have compared the
performance of our system against Tesseract’s newly released Arabic recognition, and the performance of both
systems on clean images is almost the same.
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1. INTRODUCTION

There has been a lot of research in the field of OCR which mainly focuses on character recognition for Latin
languages. However, research in Arabic script OCR has started relatively later. A lot of studies have been done
in order to investigate the challenges associated with recognition for Arabic script languages, and to suggest
approaches that take into account these challenges. Most of the research done in Arabic script OCR is mainly
for the Arabic language, such as Badr et al.,1 Khorsheed,2 and Cheung et al.3 However, research for other Arabic
script languages such as Persian and Urdu appeared much later, and is even more limited. Research for Urdu
language recognition has recently started to grow, e.g., Pal et al.4 and Hussain et al.5 As for the available OCR
products, a small number of commercial systems provide recognition for some Arabic script languages. On the
other hand, free OCR systems mainly provide recognition for Latin languages, such as Ocropus, Ocrad, etc.

In this paper, we present an OCR application for Arabic script languages called Nabocr∗. The application is
initially trained to be used for the recognition of both Urdu and Arabic languages. Moreover, we have generalized
the application to handle any other Arabic script language. This is done by allowing the user to train the system
from scratch giving it as input sufficient text for this language. In order to evaluate the performance of our
recognition system, we have generated a dataset called UPTI (Urdu Printed Text Image Database). UPTI
consists of different versions that measure different aspects of the system. It provides versions that measure the
accuracy of both line and ligature recognition. Moreover, it contains versions of degraded text images which aim
at measuring the robustness of a recognition system against possible image defects, such as, jitter, thresholding,
elastic elongation, and sensitivity.

The structure of this paper is organized as follows. In Section 2, we discuss the challenges faced when
developing a recognition system for Arabic script languages. In Section 3, we discuss the approaches proposed
for implementing our application, Nabocr. In Section 4, experiments for evaluating th performance of our
recognition system are presented for both Urdu and Arabic languages. Finally, we provide a conclusion of the
work done and recommendations for future work.
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∗The current version of Nabocr can be found in http://nabocr.com/.



(a) Dots highlighted in sample Urdu text

(b) Diacritics highlighted in sample Urdu text

Figure 1: Dots and Diacritics associated with Arabic letters

Figure 2: Ligature shape composed of two constituent letters

2. CHALLENGES OF ARABIC SCRIPT OCR

Arabic Script is the second most widely used writing script after Latin.6 It is used by over 400 million people.
It is based on an ancient alphabet called Nabataean alphabet. Many languages are based on this script, e.g.,
Arabic , Persian, Urdu, Kurdish, etc. Arabic letters are written from right to left, while the numbers are written
from left to right. A lot of challenges are faced when developing an OCR system for Arabic script because of the
nature of Arabic script languages which will be further discussed in this section.

Dots and Diacritics: Some Arabic letters have dots and diacritics associated to them as shown in Figures 1a
and 1b. A dot is considered as a main part of the letter. Dots are generally used to differentiate between letters
that have the same main body. Diacritics are used to identify a certain sound to be used when pronouncing
the letter. Since dots and diacritics are not directly connected to the letter they are associated with, this could
possibly cause problems when trying to associate the components that belong to the same letter in order to
perform recognition.
Cursive Nature: Arabic script is considered to be a cursive script, where letters sometimes join together in a
word to form a single connected shape as shown in Figure 2. The shape formed by the connected letters is called
a Ligature, which is basically a subword. An Arabic word can be formed of a single ligature or possibly more.
Context Sensitivity: As a result of the cursive nature of the Arabic script languages, a letter can occur in four
possible positions (beginning, middle, end, or isolated). According to the context of the letter, each position will
have a different shape as shown in Figure 3.
Script Specific Challenges: There are different writing styles for Arabic script languages, such as Naskh,
Nastalique, Batol, Jaben, Taleeq, etc. The two most common writing styles in Arabic script languages are
Naskh and Nastaleeq. Naskh is widely used in Arabic text books, while Nastaleeq is widely used in Urdu news-
papers and novels. Figure 4 shows the difference between the two writing styles. Nastaleeq appears to be more
complicated in writing than Naskh. In Nastaleeq font, ligatures can horizontally overlap each other which can
lead to problems when segmenting the word into ligatures. Moreover, Nastaleeq has no spacing between the



Figure 3: Different forms of the same letter Meem

(a) Naskh (b) Nastaleeq

Figure 4: Common writing styles for Arabic script

words that can lead to word segmentation errors.

3. ARABIC SCRIPT OCR: NABOCR

The general framework of our approach as shown in Figure 5 consists of three main parts:

• Training which takes as input raw Arabic script data as text files. The training part outputs a dataset
of ligatures, where each ligature is described by a feature vector.

• Recognition which takes as input an image specified by the user. It uses the dataset of ligatures generated
from the training part to convert the image into text.

• User Interface which allows users to edit the text result of the recognition output. Moreover, users can
modify the dataset of ligatures being used by the Recognition part.

3.1 Training Phase

The main goal of the training phase is to prepare the application to be used for text recognition for a certain
Arabic script language. Training phase consists of two main steps:

Figure 5: General Framework of Nabocr



Figure 6: Steps of Dataset Generation

1. Generation of a dataset of images for the possible ligatures of the Arabic script language to be used by the
application.

2. Extracting features that describe each ligature in the dataset generated by the previous step.

3.1.1 Ligature Dataset Generation

In order to generate a dataset of ligatures, we use as input sufficient text data written in a given Arabic script
language. The following steps are done as shown in Figure 6:

1. Ligatures are identified and extracted from the input text along with their frequency of occurrence in the
text. This is done using orthographic rules of Arabic script that determine the delimiters of the ligatures
to be extracted.

2. Synthetic images for each extracted ligature are rendered using a rendering engine.

3. Degraded versions are generated for each ligature image, and added to the dataset of synthetic images.

In order for the system to be able to handle input images with noise, the system is trained on degraded
images as well as clean images. We have used four degradation models proposed by Baird7 to generate degraded
images from synthetic images. These models are used to describe the following local imaging defects: elastic
elongation, jittering, sensitivity, and thresholding. The number of degraded samples generated for each ligature
depends on how frequent this ligature is in the language. The more frequent a ligature is, in other words the
more probable a ligature is to occur, the more degraded samples it will have in the dataset.

Our system is initially trained to recognize both Urdu Nastaleeq and Arabic Naskh fonts. We have generated
datasets for each language using Urdu and Arabic books available online as text files. The number of ligatures
extracted for Urdu is over 10,000 ligature having different sizes. As for Arabic ligatures, over 20,000 ligatures
are extracted from the Arabic text used. Using the above steps, images are generated for the ligatures extracted
in Nastaleeq and Naskh fonts.

3.1.2 Feature Extraction

The second main step of the training phase is to extract a feature vector representing each ligature image included
in the generated dataset. For this purpose, the following steps are done as shown in Figure 7:

1. Normalize each image to a fixed width and height. The rescaling process is done in a way that keeps the
aspect ratio between the width and the height of the ligature image. Therefore, the shape of the ligature
in the output normalized image is not affected.

2. Extract contour (boundary) of the ligatures in each sample image.

3. Describe each ligature shape image using a shape descriptor as a feature vector. The shape descriptor we
used is called Shape Context, which will be further explained in this section.



Figure 7: Feature Extraction in Nabocr

Figure 8: Extracting contour points

Contour Extraction

The contour of a ligature is extracted using an approach proposed by Hassan et al.8 The approach proposes
extracting the contour by first applying a logical grid to the shape image as shown in Figure 8. Secondly, transition
points along the grid lines are considered as contour points. Transition points are extracted by detecting points
on the grid lines at which the pixels’ intensity values transition from black to white, or from white to black. The
system takes as input the normalized binary image of a ligature and performs the following steps:

1. Calculate a matrix containing absolute difference between every two pixels in the image horizontally.

Hij = |I(i, j)− I(i+ 1, j)| (1)

2. Calculate a matrix containing absolute difference between every two pixels vertically.

Vij = |I(i, j)− I(i, j + 1)| (2)

3. Performing logical OR operation on both matrices.

Rij = Hij OR Vij (3)

4. A postprocessing step: traversing the contour points after extraction and removing points that are relatively
close to each other.

Shape Context

The final step of the training phase is to represent each ligature from the dataset using a feature vector. For
this purpose, we use a shape descriptor called Shape Context. Shape context is a shape descriptor presented by
Belongie et al.,9 which is used to perform shape matching and object recognition.

In this approach, the object shape is represented as a set of points from its contour. Points can belong to the
internal or extrenal contour of the shape being described.



Figure 9: Point Histogram of 16 bins (5 orientation bins and 4 distance bins)

P = {Pi} (4)

Each point Pi is described by a log polar histogram Hi that relates Pi to its surrounding points from the
contour of the shape. The origin of a histogram is centered at the point it is describing as shown in Figure 9. It
divides the space around it into paritions called bins. Each bin is identified by two parameters: distance from
the centre point, and the orientation relative to the centre point.

The histogram Hi of a point Pi is considered to be its shape context. It counts the number of surrounding
points in each bin using equation 5.

Hi(k) = #[q 6= Pi|q − Pi ∈ bin(k)] (5)

The following steps are done to calculate the shape context of the points describing the contour of an object
shape:

• Measuring the Euclidian distance between every two contour points to form a matrix D, where Dij is equal
to the distance between points Pi and Pj .

• Distance normalization is done to make the histogram invariant to any scaling resulting in a new matrix
norm(D).

• Quantize the normalized distances to a fixed number of distance bins (rbins).

quant(Dij) =
∑

0<k<|rbins|

norm(Dij) < rbin(k) (6)

where given a fixed number of distance bins (rbins), the equation calculates the distance bin at which point
Pj occurs relative to Pi.

• Measuring angle between contour points to form a matrix A, where Aij is equal to the angle between points
Pi and Pj .

• Angle normalization is done by converting each angle measure to be within the scale from 0 to 2π to form
a new matrix norm(A).

• Quantize the resulting normalized angles to a fixed number of orientation bins (tbins).

quant(Aij) = 1 + floor(norm(Aij)× |tbins|)/2π) (7)

where given a fixed number of orientation bins (tbins), the equation calculates the orientation bin at which
point Pj occurs relative to Pi.

• Using both quant(D) and quant(A), we can formulate a histogram for each point using equation 5.



Figure 10: Dividing Ligature into 4 regions

The previous approach calculates the shape context of each point in the contour of a ligature. However, in
order to describe the whole ligature, we use an approach proposed by Hassan et al.10 which is as follows:

• Dividing the ligature into regions as shown in Figure 10.

• Calculating the shape contexts of points in each region separately.

• Summing up the shape contexts of the points in each region to form a histogram describing each region.

• Concatenating the region histograms calculated to form a histogram describing the ligature.

3.2 Recognition Phase

The recognition part takes as input an image which is specified by the user through the user interface. Its main
task is to recognize any text that occurs in the input image. The recognized text is presented as an output to
the user in an editable format. The recognition of the text in an input image is done using the following steps
as shown in Figure 11:

1. Segment page image into lines.

2. Segment each line extracted from the previous step into ligatures.

3. Describing each unkown ligature image using a shape descriptor as explained in the training phase.

4. Classify each unknown ligature to a ligature from the dataset generated in the training phase using k-
Nearest Neighbor.

5. Recognized ligatures from the classification step form the output editable text.

3.2.1 Page Segmentation

In our application, we have used a simple approach called horizontal projection assuming one column pages. In
this approach, we count the number of black pixels in each row in the page, and then we cut at parts having low
horizontal projection. However, this may cause some problems when applying it to Arabic script documents. As
shown in Figure 12, dots and diacritics in Arabic text may occur slightly above the text line, which may lead to
cutting into the line itself and having false lines detected. A possible solution to this problem is to perform an
extra step after the extraction of lines using horizontal projection in order to detect any possible false lines. To
detect false lines, the heights of the lines extracted are checked. If a line has a relatively small height compared
to the other lines, then it is considered as a false line and it is then merged with the nearest line detected.



Figure 11: Recognition steps in Nabocr

Figure 12: Page Segmentation problems due to diacritics

3.3 Line Segmentation

In order to segment each line into its constituent ligatures, we use an algorithm proposed by Javed et al.11 Javed
et al. proposed this algorithm specifically for Arabic script Nastaleeq lines, where given as input an image of a
line, the algorithm performs the following steps:

1. Estimating the baseline position by calculating the row which has the maximum horizontal projection as
shown in Figure 13a.

2. Extract connected components in the text line as shown in Figure 13b.

3. Identify the diacritics and dots from the main bodies in the text line, where the dots or diacritics are
considered as the components occuring above or below the baseline as illustrated in Figure 13c.

4. Associate each dot and diacritic to its corresponding ligature by calculating the horizontal span of each
detected dot and diacritic onto the baseline.

(a) Baseline Detection (b) Extraction of Connected Components

(c) Dots Detection (d) Output of Line Segmentation

Figure 13: Line Segmentation Steps



(a) Elastic Elongation

(b) Jitter

(c) Sensitivity

(d) Thresholding

Figure 14: Degradation parameters applied to UPTI

After performing the above steps on the input line, the output of the line segmentation algorithm will be as
demonstrated in Figure 13d, where each ligature is detected separately along with its dots and diacritics.

4. TESTS AND RESULTS

4.1 Urdu Evaluation

We have generated a dataset called UPTI (Urdu Printed Text Image Database) in analogy to APTI dataset,
which is an online database for synthetic word images. APTI12 dataset aims to measure the performance of
different recognition systems for the Arabic language. UPTI dataset contains more than 10,000 synthetic images
of Urdu text rendered in Nastaleeq font. The UPTI dataset consists of different versions, where each version
measures different aspects of the recognition system. The different versions are as follows:

1. Line level UPTI which contains synthetic images for text lines.

2. Ligature level UPTI which contains synthetic images for text lines, where each ligature in the line is
colored with a different color.

3. Degraded UPTI which contains degraded versions of both line and ligature level datasets. The degra-
dation is done using four different degradation parameters, which are elastic elongation, sensitivity,
jittering, and thresholding. Each degradation parameter is changed gradually while keeping the other
degradation parameters at their default values as shown in Figure 14. The main aim of this pro-
cess is to generate different degraded versions of UPTI and to measure the performance of the OCR
recognition system against the variance of each degradation parameter.

Performance Evaluation
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(b) Sensitivity
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(c) Threshold
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(d) Elastic Elongation

Figure 15: UPTI Evaluation Results for Line and Ligature level UPTI

In order to evaluate the recognition of Urdu text, we have initially run the recognition algorithm on the
undegraded versions of the UPTI datasets. The results for the line level dataset gave a ligature error rate of
13.3%, and a letter error rate of 11.2%. However, if we ignored the unknown foreign symbols, such as the
punctuation marks, and foreign numbers, which are not considered by the recognition system, the ligature error
rate drops to 9.1%, where the letter error rate becomes 8.5%. When increasing the degradation effects on line
level dataset images, recognition error rate changes as shown in Figure 15.

When measuring the error rate for the ligature level dataset , the error rate dropped significantly from 9.13%
to 0.4% for the ligature error. Similarly, the letter error rate decreased from 8.48% to 2.6%. The decrease in the
error rate from the line to ligature level is expected. For the line level dataset, we first use the line segmentation
algorithm in order to know where the ligatures are, and then we perform recognition. However, the ligatures
are already colored in the ligature level dataset. Therefore, we do not perform line segmentation and we only
perform recognition on the ligatures. Therefore, the ligature level error rate does not include line segmentation
errors, which reduce the error rate significantly. When increasing the degradation effects on ligature level dataset
images, recognition error rate varies as shown in Figure 15.

4.2 Arabic Evaluation

Our recognition system, Nabocr can be used to recognize any Arabic script language. Therefore, in order to
evaluate the performance of the system, it is important to perform evaluation on more than one Arabic script
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(b) Sensitivity
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(d) Elastic Elongation

Figure 16: Evaluation results for Tesseract and Nabocr

language. We have used an online electronic book written in Arabic to measure the performance of Nabocr.
The e-book used consists of 47 single column pages. In order to measure how robust the Arabic recognition is
against the different degradation effects, we have generated degraded versions of the book by applying elastic
elongation, sensitivity, jittering, and thersholding.

Performance Evaluation

One of the systems that has recently provided support for Arabic language recognition is Tesseract.13 As a
part of the evaluation process, we have run Tesseract’s recognition engine on the Arabic e-book versions that
were used for evaluating Arabic Nabocr, and we have compared the results of both systems. For undegraded
versions of the book, both systems achieved nearly the same performance. In comparing the ligature error
rate, Tesseract’s error rate is 16.2%, while our system scored 16.1 %. When comparing the letter error rate,
Tesseract’s error rate is 10.1%, while Nabocr’s error rate is 13.9%. On the other hand, when we test Tesseract
on the different degraded versions of the e-book, Tesseract is relatively more robust than Nabocr with different
degradation levels as shown in Figure 16.



5. CONCLUSION

In this paper, we have presented an OCR system for Arabic script recognition, called Nabocr. First, we have
analyzed the different challenges faced when performing recognition for Arabic script languages. Secondly, we
have explained the different approaches used in our system to overcome these challenges. The system is initially
trained to recognize Urdu Nastaleeq script and Arabic Naskh script. Moreover, it can be further generalized
to recognize other Arabic scripts. We have evaluated the performance of our application for both Urdu and
Arabic recognition. In order to evaluate our system for Urdu recognition, we have generated a dataset called
UPTI (Urdu Printed Text Image Database), which contains different versions that measure different aspects of
a recognition system. For clean Urdu text images, the error rate for line recognition is 11.2%. The error rate for
ligature recognition is 2.6%. Moreover, we have evaluated the effect of different degradation parameters, such as
jittering, sensitivity, etc. on the performance of our system. As for Arabic recognition, we have evaluated the
performance of our system by performing recognition on an e-book. Our system scored an error rate of 13.9%.
Moreover, we have compared the performance of our Arabic recognition against the newly released version by
Google’s Tesseract. The error rate of both systems is nearly the same for clean images.

As for future work, we recommend several ways to enhance the approaches used by our system. In order
to improve the recognition accurracy of Nabocr, we propose using a language model for each Arabic script
language to take into consideration the probability of the sequence of ligatures being recognized. Improving line
segmentation is highly recommended because of the gap between the error rates of both the line and ligature
recognition of our system. Possible ways to improve line segmentation is to add a separate mechanism for
dots/diacritics detection and detecting merged ligatures.
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