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A B S T R A C T

Computer vision and image processing approaches for automatic underwater fish detection are gaining attention
of marine scientists as quicker and low-cost methods for estimating fish biomass and assemblage in oceans and
fresh water bodies. However, the main challenge that is encountered in unconstrained underwater imagery is
poor luminosity, turbidity, background confusion and foreground camouflage that make conventional ap-
proaches compromise on their performance due to missed detections or high false alarm rates. Gaussian Mixture
Modelling is a powerful approach to segment foreground fish from the background objects through learning the
background pixel distribution. In this paper, we present an algorithm based on Gaussian Mixture Models to-
gether with Pixel-Wise Posteriors for fish detection in complex background scenarios. We report the results of
our method on the benchmark Complex Background dataset that is extracted from Fish4Knowledge repository.
Our proposed method yields an F-score of 84.3%, which is the highest score reported so far on the aforemen-
tioned dataset for detecting fish in an unconstrained environment.

1. Introduction

Observation of organisms in their natural environments over long-
time periods is critical to estimating their biodiversity. This is especially
crucial for endangered species so that effective counter-measures can be
planned and executed for their protection. More so, such observation is
also necessary to measure the effectiveness of such conservation stra-
tegies. For marine ecosystems, marine biologists are interested in the
identification of fish species, monitoring their populations, sizes, and
other trends. While traditionally destructive sampling methods were
used for such studies, the trend has moved towards non-destructive
sampling methods (McLaren et al., 2015). Video-based sampling in
underwater environments has been used to study fish species (Harvey
and Shortis, 1995; Shortis et al., 2009). Such videos collected over long
time periods create terabyte-scale of data, of which manual analysis is
impractical. Hence, automated and efficient methods based on com-
puter vision algorithms are needed to obtain meaningful statistics from
such large datasets. However, automated approaches face challenges in
the form of water murkiness, variation in lightning, erratic fish move-

ments, and the movement of aquatic plants in the water.
Generally, video-based automatic fish sampling involves two tasks:

(a) fish detection, which discriminates fish from non-fish objects in
underwater videos, (b) fish species classification, which identifies the
species of the detected fish. Fish sampling approaches can be adopted in
either a constrained or an unconstrained environment. Earlier work in
this domain mainly focused on constrained sampling. Strachan used
colour and shape descriptors for 23 fish species (Strachan, 1993) and to
differentiate between a particular fish specie collected from two dif-
ferent sources (Strachan and Kell, 1995). The system worked in a
strictly confined environment for caught dead fishes. Harvey and
Shortis (1995) proposed an approach where they made the fish flow
through a chamber under controlled illumination. They used a stereo-
camera to measure fish lengths in such conditions. Storbeck and Daan
(2001) used a neural network to classify fish placed on a conveyor belt,
with the camera facing perpendicular to the fish samples.
The above described methods work well in constrained environ-

ments, but are fine-tuned only towards those settings. Needless to say,
they do not perform well in natural unconstrained environments with
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freely swimming fish. This led to the development of more powerful
and robust methods for the task. Rova et al. (2007) and Spampinato
et al. (2010) used texture and shape information to classify fish in
natural environments. A variety of machine learning techniques have
also been used for the purpose such as Principal Component Analysis
(PCA) (Turk and Pentland, 1991) and Linear Discriminant Analysis
(LDA) (Mika et al., 1999). More recently, Hsiao et al. (2014) used a
combination of both PCA and LDA to extract features and a sparse re-
presentation based classifier to detect and classify more than 1000
images of 25 different fish species with 81.1% accuracy. Huang et al.
(2015) proposed a hierarchical classification method using Support
Vector Machines (SVM) for multi-class classification based on the
colour and textural information of fish generating 74.8% accuracy in
fish species classification on a dataset having 24,000 images of 15
species. Palazzo et al. (Palazzo and Murabito, 2014) used Efficient
Match Kernels (EMK) and Kernel Descriptors (KDES), which are kernel
generalizations of the Bag-of-Words (BOW) and Histogram-of-Gradient
(HOG) descriptors respectively, for fish species classification in under-
water images yielding 84.4% classification accuracy on their dataset of
50,000 images of 10 different species. Spampinato et al. (2014) used
Texton features to build a covariance model of the background for fish
detection.
Background modelling techniques (Hsiao et al., 2014; Palazzo and

Murabito, 2014; Spampinato et al., 2014) for fish detection focus on
identifying different features that are used to model background pixels.
Any changes in the subsequent frames of the video result in an offset
from the expected results of the model. Such pixels can then be cate-
gorized as the foreground. Gaussian Mixture Models (GMM) (Stauffer
and Grimson, 1999; Zivkovic, 2004) is also a background modelling
technique, which builds a probabilistic model of the background using
unsupervised generative modelling. Our work builds upon the GMM
algorithm (Stauffer and Grimson, 1999) and augments it with Pixel-
wise Posteriors (Bibby and Reid, 2008) to obtain better results for fish
detection in natural environments.
Recent advances in machine learning include employing deep

neural networks to extract abstract features from input fish data using
colour and texture information. The main motivation behind using
these architectures is to learn highly nonlinear and complex data dis-
tributions representing fish in underwater video imagery.
Moniruzzaman et al. (2017) presented a fish detection accuracy of
65.2% on a dataset of 93 images with fish instances using a deep
convolutional neural network. Similarly, various deep architectures are
used in (Moniruzzaman et al., 2017; Salman et al., 2016; Siddiqui et al.,
2017) producing an average accuracy of 98.43%, 94.3% and 89.95%
respectively on fish species classification task using several dedicated
fish datasets consisting of 20,000 to 30,000 still images of multiple fish
species. The main problem faced in using such complex systems is
computational complexity, which bars them in real-time deployment,
and the necessary requirement of very large annotated datasets to be
used in training. Our main contributions reported in this paper are:

• A data-agnostic approach to fish detection in natural underwater
environments, which obtains state-of-the-art results for the task,
while maintaining real-time performance.
• Re-annotation of the Fish4Knowledge Complex Background dataset,
described later in Section 2.1, which previously omitted a significant
amount of fish.
• Evaluation and comparison over a larger dataset than the previous
state-of-the-art method (Spampinato et al., 2014).

The rest of this paper is organized as follows: We discuss our pro-
posed method and the dataset used for evaluation in Section 2. Section
3 presents the results for our method, followed by a discussion on the
outcomes and validity of our method in Section 4. Finally, we conclude
our paper and list potential future work directions in Section 5.

2. Material and methods

2.1. Dataset

Fish4Knowledge (Boom et al., 2014) is a large dataset consisting of
underwater videos captured in Taiwan's coral reefs. Our work focuses
on a small subset of the Fish4Knowledge dataset, containing 17 videos
broadly categorized in seven different categories. Hereafter in this
paper, we refer to this subset as the Fish4Knowledge Complex Back-
ground (FCB) dataset. Each of the the seven dataset categories present a
unique challenge for detection algorithms including Blurred imagery,
Camouflage foreground scenes where it is hard to distinguish fish from
the background, Crowded video data involving dense gathering of fish
in larger numbers in each image, Complex background videos showing
rich background with colourful objects and coral reefs on seabed, Dy-
namic background videos depicting moving aquatic plants and seaweed,
Hybrid data is a combination of complex and dynamic background and
finally Luminosity variation, which contains videos with changing light
beams due to surface water disturbances. Table 1 provides an overview
of the dataset categories, and Fig. 1 shows sample frames and the an-
notation used for the dataset.
The videos are a mix of 320× 240 and 640× 480 resolution, with

frame rates at 5 FPS and 24 FPS respectively. In total, there are 881
annotated frames, which make the task challenging especially for the
recent state-of-the-art deep learning (LeCun et al., 2015; Schmidhuber,
2015) methods, which require a large amount of annotated data for
effective training. Hence, we resort to traditional computer vision ap-
proaches to tackle the problem without compromising the accuracy of
fish detection results. Additionally, the low resolution makes the de-
tection task more difficult as the video imagery induces more pixel
distortion and noise in the already complex settings.
Fig. 1 shows some sample images from each category, where the last

figure represents the segmentation mask for the annotation present in
the dataset.
One of the primary concerns over this dataset was the inconsistent

annotation scheme previously used for annotating the fish. A lot of
frames were annotated such that even prominently visible fish were not
labeled. Similarly, a fish would be annotated in a particular frame but
not annotated in the previous or the next frame despite being under-
going only small changes in its position. This discrepancy is illustrated
in Fig. 2. To remove this inconsistency, we manually re-annotated all
the labeled frames to include all the visible fish using Adobe®Photo-
shop©. Fig. 2 depicts this re-annotation.

2.2. Methodology

Adaptive background subtraction is a popular method to cater for
scenes with dynamic background (Stauffer and Grimson, 1999). Such
methods work by creating a background model and then constantly
updating it over time. While this works well for dynamic backgrounds,
adaptive background subtraction has a drawback that it tends to fail if
the object of interest is moving slowly or becomes stationary for some

Table 1
Fish4Knowledge Complex Background Dataset statistics.

Category Number of videos Number of annotated
frames

Blurred 3 122
Camouflage foreground 2 108
Complex background 3 147
Crowded 3 116
Dynamic background 2 96
Hybrid 2 90
Luminosity variations 2 202

Total 7 17 881
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time. Therefore, in such cases, the method segments out object of in-
terest partially or, in some cases fails to detect the object at all. In most
of the processing pipelines, partially segmented objects are discarded as
a post-processing step due to a low pixel count. This increases the false
negative count and results in a poor performance overall. Instead, we
take care of these partial detections using pixel-wise posteriors (Bibby
and Reid, 2008) to improve their segmentation mask.

2.2.1. Gaussian mixture models
We utilize adaptive background subtraction, specifically Grimmson

GMM (Stauffer and Grimson, 1999) in our approach, due to its

promising accuracy on dynamic background scenes and its real time
performance. A GMM is a probabilistic model of the data distribution,
represented by multiple individual Gaussian distributions, each char-
acterized by its mean and covariance. These means and variances are
learned in an unsupervised manner over an individual pixel distribu-
tion. In other words, each pixel value represents a feature of the input
data, where feature vectors are obtained by the combination of these
pixel values across subsequent video frames; thus, giving us feature
vectors equal in number to the number of pixels in a video frame. The
GMM then learns a model of the background given these features,
where the background is defined as every non-fish entity in the video.

Fig. 1. The Fish4Knowledge Complex Background dataset. Figures (a)-(g) show sample frames from each of the seven dataset categories, while (h) shows an
annotated frame to indicate the type of annotation used for the dataset.
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The foreground corresponds to the fish, which are to be detected. The
GMM model for the background is given as:

= =S w µ for j to M, , 1M j j
j

g
(1)

where μj and ∑j represent the mean and covariance matrices of the jth
feature vector corresponding to the pixel j. wj are the learned weight
vectors, which indicate the contribution of the individual mono-Gaus-
sians. Mg represents the number of individual Gaussians, where Mg=3
in our case. The probability that a pixel x belongs to the background
model SM in the tth frame is given by:
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here, D is the dimensionality of the feature vector. Eq. (3) is the stan-
dard mono-Gaussian distribution of a pixel x given the mean and var-
iance. A higher probability in Eq. (2) indicates that a particular pixel
corresponds to the background. In contrast, a low probability value
indicates that the pixel significantly deviates from the background
model i.e. there was a significant change in the pixel value, indicating
motion. We used the bgslibrary1 (Sobral, 2013) for the GMM im-
plementation. The value for the number of mono-Gaussians Mg was
varied between 2 and 5, while the learning rate, which must be tuned to
avoid local minima of loss function in training the GMM, was chosen in
the range of 0.001 to 0.01. In our case, Mg=3 and learning rate of
0.005 were selected to yield the best performance.
The background subtraction outputs segmentation masks, which

correspond to moving objects; in our case, fish. We perform an opening
(erosion followed by dilation) operation with a 3×3 kernel on the
obtained segmentation masks to filter noise and remove small non-fish
moving objects. After the opening operation, we perform Connected
Component Analysis (Samet and Tamminen, 1988) to obtain individual
blobs representative of fish detections. We ignore the blobs with very
small size in terms of pixel count as a second filter for noise and non-
fish objects. For each blob, we determine its bounding box and apply a
20% padding to each side to get an inflated blob. The padding is applied
to ensure that there is enough background information for the next

steps in our algorithm. Concurrently, the original image is compressed
to 5-bit colour values instead of 8-bit, which significantly decreases
histogram size from 2563 to 323. This has a positive effect on the al-
gorithm run time. We then obtain the pixels corresponding to the in-
flated blob in the compressed version of our subject frame.

2.2.2. Pixel-wise posteriors
To address the limitations of adaptive background subtraction, we

use Pixel-wise Posteriors (Bibby and Reid, 2008) to improve the seg-
mentation results from the background subtraction. This is especially
useful for slow moving objects, which are detected partially by back-
ground subtraction algorithms. These partial detections can not be ig-
nored since object detection is often only the first step in such an
analysis pipeline. Inaccurate detection often leads to an inaccurate
analysis. In such cases, the slow moving objects can be of even more
importance such as those in the case of endangered species showing
signs of illness. The following notations are used in this algorithm:

• x: Pixel's spatial position in the object coordinate frame.
• y: Pixel's intensity (In our experiments, it corresponds to RGB value).
• W(x, p): Warp with parameters p.
• M= {Mf,Mb}: Model's parameter either foreground or background.
• P(y|Mf): Foreground model over pixel values y.
• P(y|Mb): Background model over pixel values y.
• C: The contour that segments the foreground from background.
• Φ(x): Shape kernel.
• Ω= {Ωf,Ωb}: Pixels in the object frame [{x0,y0}, … ,{xN,yN}],
which is partitioned into foreground pixels Ωf and background
pixels Ωb.

Fig. 4 shows a generative model, which is used to represent the
image creation process of the posterior analysis. The model considers
image as a bag-of-pixels and can, given the model M, the shape Φ and
the location p, be used to sample pixels {x,y}. Although the final image
would not look like the actual foreground/background image to the
naked eye due to jumbling of pixels but the colour distributions cor-
responding to the foreground/background regions Ωf/Ωb would match
the models P(y|Mf) and P(y|Mb) respectively. Due to this simplicity of
this model that gives more invariability to the viewpoint and allows 3D
objects to be tracked robustly without having to model their specific 3D
structure. The joint distribution for a single pixel given by the model in
Fig. 4 is:

=P x y M P x M P y M P M P Pp p p( , , , , ) ( | , , ) ( | ) ( ) ( ) ( ) (4)

Now, we divide eq. (4) by P(y)= ∑MP(y|M)P(M) to give:

=P x M y P x M P M y P Pp p p( , , , | ) ( | , , ) ( | ) ( ) ( ) (5)

Fig. 2. The inconsistencies in the
Fish4Knowledge Complex Background da-
taset. The left column depicts frame number
249 from the Camouflage foreground video 1
and frame number 700 from the Crowded
video 3. The middle column shows the ori-
ginal ground-truth annotation available for
the two images. The right column shows the
same frames re-annotated with new fish
instances clearly visible to human eye in the
original coloured images. As noticed, the
masks for the bottom-right and top-right
frames are missing in the original annota-
tions in one frame while being present in
the other, despite no significant changes in
between the frames for the two fish. Our re-
annotation corrects this discrepancy.

1 https://github.com/andrewssobral/bgslibrary.
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where the term P(M|y) is the pixel-wise posterior, of the models M,
given a pixel value y. The Pixel-wise Posteriors model is given by:

= =
=

P M y
P y M P M

P y M P M
j f b( | )

( | ) ( )
( | ) ( )

,j
j j

i f b i i, (6)

Where j represents the foreground or background model index, P
(Mj) is probability of a pixel belonging to model j, y is colour value of
pixel, P(y ∣ Mj) is probability of a particular colour belonging to model j
and P(Mj ∣ y) is posterior probability of a pixel being part of a model
given its colour value.
We apply Pixel-wise posteriors on the inflated blobs as seed and the

corresponding extracted pixels from the compressed original image.
The method uses both, the model and the colour value of pixels to
calculate P(y ∣ Mj) by dividing frequency of pixel value y by total
number of pixels in Mj. P(Mj) is calculated by dividing pixel count in Mj

by the total number of pixels in the image. ∑i=f, bP(y ∣ Mi)P(Mi) can be
replaced by P(y).
The results of Pixel-wise Posteriors are concatenated into a single

image after another size filtering step to ignore very small blobs. Our
algorithm is computationally efficient and gives real-time performance
on CPUs, as opposed to the current state-of-the-art (Spampinato et al.,
2014), which require the support of graphical processing units (GPU) in
conjunction with the CPU. Fig. 3 gives an overview of our algorithm.

3. Results

We use the popular F-measure to evaluate our detection results. The
F-measure depends on the Precision and Recall, which themselves are
measures of classification performance and are defined as:

=
+

Precision True Positives
True Positives False Positives (7)

=
+

Recall True Positives
True Positives False Negatives (8)

A high precision indicates a low number of false positives while a
high recall is synonymous with a small number of false negatives.
Usually, these two are competing objectives and maximizing one leads
to the other lowering in value. The F-measure thus provides a balanced
measure between the two objectives and is obtained as the harmonic
mean between the two. It is defined as:

=
+

F measure Precision Recall
Precision Recall (9)

In addition to our proposed method, we also propose an enhance-
ment to the Grimson GMM (Stauffer and Grimson, 1999) algorithm
where we achieve significantly improved results over the GMM

implementation used by (Spampinato et al., 2014). GMM-based back-
ground subtraction followed by 3× 3 opening (erosion followed by
dilation) kernel improves the results from 69.92% (Spampinato et al.,
2014) to 83.26% in our case. Further, using Pixel-wise Posteriors in
addition to the above enhancement, we achieve an 84.28% F-measure,
which according to the best of our knowledge, sets the current state-of-
the-art on the employed dataset. Additionally, our algorithm is com-
putationally efficient and supports real time performance even on CPU-
based systems. The results for both the Enhanced GMM method as well
as our primarily proposed approach using Pixel-wise Posteriors2 are
summarized in Table 2. Fig. 5 also shows some of the detection results
for our algorithm.

4. Discussion

According to International Union for Conservation of Nature
(IUCN), 1414 species of fish are at the risk of extinction. Similarly, 36%
of 15,000 known fresh water species are threatened due to habitat loss,
industrial pollution, deforestation, climate change and commercial over
fishing. Therefore, the need of quick and extended underwater sam-
pling of fish is inevitable to monitor their population size. The avail-
ability of advanced computational resources has created opportunities
for rapid yet automatic sampling of fish fauna using underwater videos.
As opposed to laborious and costly methods of manual sampling, au-
tomatic fish detection using efficient machine learning and computer
vision techniques is gaining attention of the marine scientists and
conservationists due to their ability to generate fast detection results.
The main contribution of this paper is performance improvement

over existing solutions for automatic fish detection in unconstrained
underwater videos. This is a vital step to estimate fish abundance,
biomass and assemblage in any water body. To achieve this aim, we
have proposed a novel recipe to combine GMM-based background
subtraction with pixel-wise posteriors, a refining step to compensate the
shortcomings of GMM. GMM is a machine learning algorithm, which in
our case, acts as the foreground segmentation process by learning the
first and second order statistics of the background pixels. Estimating
this background distribution assumes the background to completely
lack foreground objects i.e., fish in the training dataset. In un-
constrained underwater videos, it is extremely difficult to extract pure
background frames as fish instances may still appear in the scenes of
training data. This results in a compromised performance due to either
false alarms or miss detections as shown in Fig. 5, third column. To
some extant, this problem can be rectified by applying morphological

Fig. 3. An overview of our proposed method.

2 https://github.com/ahsan856jalal/Fish-Segmentation-using-pixel-wise-
Posteriors.git.
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operations to subside noise and redundancy in the output. Furthermore,
due to imperfect training data, GMM sometimes fails to detect sta-
tionary or partially moving fish if that fish instance also occurs in the
training dataset as it gets confused with the background and results in a
fragmented output foreground blobs of the fish. This problem is cured
by employing probabilistic modelling of both background and fore-
ground together with realistic object bounding warping in pixel-wise
posterior approach. We have modified the output of GMM by adding an
opening operation (erosion followed by dilation) to improve its fore-
ground detection results from 69.92% to 83.26%. After that, we per-
formed connected component analysis to get inflated blobs for the
foreground objects, which are passed to pixel-wise posteriors module
along-with the corresponding extracted pixels from the compressed
original image. The improved segmentation of the foreground objects
from pixel-wise posteriors are concatenated to a single image after fil-
tering blobs below a certain size.
Table 2 summarizes a comparison between our proposed approach

and other techniques, which have been used frequently for object de-
tection tasks in videos. It is evident that our proposed algorithm out-
performs all others on FCB dataset on average F-scores. It is worth
mentioning here again that we not only established an enhancement to
the existing GMM (Stauffer and Grimson, 1999) through morphological
image post-processing, but also refined it with pixel-wise posterior
analysis. Our proposed approach achieved the best performance in the
categories of Camouflage foreground objects, Crowded, Dynamic back-
ground and Luminosity variation. On the other hand, our enhanced ver-
sion of GMM outperformed in Blurred scenario, although it is ahead of
the pixel-wise posterior refinement with a very narrow margin of
0.42%. The main reason behind this anomaly is the appearance of
Blurred video, where it is extremely difficulty to estimate pixel-wise
posteriors due to uniformity in pixel intensity of the entire frame. This
uniformity is caused by the severe water murkiness in most of the vi-
deos of this category, where foreground fish contour cannot be dis-
tinguished from the background pixels and only a slight variation can
be observed due to fish movement, which is captured by Enhanced
GMM. The pixel-wise posterior refinement of top of Enhanced GMM is
causing a very little degradation due to the wrong estimates of fish
contours (with the parameter C) that segments the foreground with the
background. KDE-RGB (Sheikh and Shah, 2005) algorithm yields the
best scores for Complex background and Hybrid category. This observa-
tion is consistent with their original work and can be justified in two
ways. First, Complex background and Hybrid scenes depict mostly com-
plex structure of background seabed representing one structural kind of
coral reef. These videos naturally show distinction in colour profiles of
foreground fish and background, which works best for KDE-RGB algo-
rithm as it exploits correlation in RGB pixel intensity with neighbouring
pixels having close spatial proximity. In other words, colour and texture
of foreground and background show good intra-correlation but poor
inter-correlation. Thereby, fish instances can be easily detected.
Second, there is uniformity in the background pixel distribution as large

portions of the frames in these videos are similar in pattern and can be
modeled using a single distribution, a method adopted in KDE-RGB
technique. These attributes cannot be observed in other video classes
hence, KDE-RGB lags as compared to other approaches especially in the
Camouflage foreground objects and Dynamic background category where
background is rich and vibrant and therefore, cannot be modeled with a
single data distribution. In addition, the texture and colours of the
foreground fish and background cannot be distinguished easily (see
Fig. 1).
Except Enhanced GMM and our proposed approach, Texton-KDE

(Spampinato et al., 2014) shows good performance on the average. In
fact, the previous best scores on FCB dataset are reported by this ap-
proach. This technique is an improvement to the KDE-RGB, where in
addition to the background, it also models the foreground fish using
their texture-dependent features in the low-contrast region of the
image. This improves the performance in the scenes where it becomes
extremely challenging to differentiate fish with the background e.g., in
the case of camouflage, fish and background pixels show confusion in
texture and similarity in colour. In their original work, the authors
limited the FCB dataset to 280 images for the evaluation of their al-
gorithm. We repeat the experiment using their algorithm with our
rectified and re-annotated dataset on the same images as are used in
their experiment but do not realize a significant improvement. On the
other hand, our evaluation dataset comprises of 881 labeled frames and
thus demonstrates an increased robustness and accuracy. Our results in
Table 2 are consistent with this observation.
We tried morphological enhancement and pixel-wise posterior re-

finement with other approaches mentioned in Table 2 including KDE-
RGB, ZGMM and Texton-KDE with significant improvement but the
scores could not exceed our proposed approach. However, the compu-
tation time was observed to be at least twice that of ours. The reason
behind this outcome is the choice of our GMM implementation (Stauffer
and Grimson, 1999), which is simple, effective and produces equally
good scores when enhanced with post-processing and pixel-wise pos-
teriors.
The computation resources utilized in our work include

Intel®Core™-i7 4 GHz CPU with 32 GB RAM and a mechanical hard disk
drive operating at 7200 rpm. With these computer specifications,
Enhanced GMM takes 150ms to process one frame and pixel-wise
posterior operation takes 200 μs per frame, which is an insignificant
computation overhead to the Enhanced GMM. Overall, our approach
achieves 6 fps (frames per second) processing speed given that some
videos in the FCB dataset are recorded even at 5 fps, which is an ac-
ceptable frame rate to observe and analyze underwater videos (Boom
et al., 2014).

5. Conclusion

We have proposed an algorithm to improve segmentation of fish in
an unconstrained underwater environment using pixel-wise posteriors

Fig. 4. (Left): Image containing fish as object showing: the
contour C, the set of foreground pixels Ωf, the set of back-
ground pixels Ωb, the foreground model P(y|Mf), the back-
ground model P(y|Mb) and the warp W(x,p); (Right): The
graphical view of the generative model showing the image as
a bag-of-pixels, which gives greater invariability to viewpoint
compared with template based tracking of objects.
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on adaptive background subtraction from Gaussian mixture model. It is
observed that adaptive background subtraction techniques suffer when
the object is slowly or partially moving or when video imagery suffers
from foreground confusion with the background, which results in in-
complete detections. Partially detected fish instances are often dis-
carded before further fish classification tasks due to their low pixel
count. This missed detection lowers the overall performance of the
system as false negatives increase and the accuracy of the system de-
creases. The experimental results have shown that the proposed ap-
proach has the best average F-score measure in detecting fish under

complex background and varying environments, which will lead to
better fish classification. Today, deep learning is emerging as the most
promising approach in extracting task-specific information from the
data utilizing highly nonlinear mathematical models especially suitable
for computer vision tasks (LeCun et al., 2015). However, their com-
putational complexity is the biggest obstacle in their deployment to the
real-word scenarios. Therefore, in future, we aim to employ deep neural
networks in conjunction with the pixel-wise posteriors with highly
optimized algorithm that should be capable of yielding results in real-
time and with favourable accuracy.

Fig. 5. Detection results on the selected frames from each category of the dataset. Original frames, ground truths, GMM outputs, and the outputs from pixel-wise
posterior analysis are shown in the first, second, third and fourth columns respectively.
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Table 2
Category-wise F-score results on the FCB dataset. Highest scores are enlisted in bold.

Method KDE-RGB (Sheikh and
Shah, 2005)

ZGMM (Zivkovic,
2004)

ML-BKG (Yao and
Odobez, 2007)

Texton-KDE (Spampinato
et al., 2014)

Enhanced GMM Proposed
approach

Video

Blurred 92.11 76.91 71.21 93.10 96.42 96.00
Camouflage foreground

objects
53.58 71.13 74.89 82.88 83.44 84.85

Complex background 87.06 76.56 82.11 82.06 71.80 75.17
Crowded 82.92 74.81 80.27 84.67 83.99 84.83
Dynamic background 59.79 64.87 78.32 76.31 77.59 78.32
Hybrid 84.87 76.11 72.79 83.45 81.60 82.11
Luminosity variations 72.43 59.63 83.13 70.10 87.99 88.71
Average 76.10 71.43 77.53 81.79 83.26 84.28
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